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Abstract

This thesis studies enumerative invariants counting orthogonal and symplectic objects in lin-

ear categories arising from algebraic geometry, as a first step towards generalizing known

results and methods in linear enumerative geometry to general non-linear moduli problems.

The main focus of the thesis is the construction of orthosymplectic Donaldson–Thomas

invariants and the study of their properties. Examples include invariants counting self-dual

representations of self-dual quivers with potential, invariants counting orthosymplectic com-

plexes of coherent sheaves on Calabi–Yau threefolds, a motivic version of Vafa–Witten type

invariants counting orthosymplectic Higgs complexes on surfaces, and so on. We prove wall-

crossing formulae relating these invariants for different stability conditions, and we carry out

explicit computations in some cases.
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Conventions

We assume familiarity with basic concepts in algebraic geometry and higher category theory.

Standard textbooks include Hartshorne [69] and the Stacks project [139] for the former, and

Lurie [105; 106; 108] for the latter.

We write ℕ = {0, 1, 2,…} for the set of natural numbers. Write ℤ𝑛 = ℤ/𝑛ℤ for the cyclic

group of order 𝑛 ∈ ℤ>0. Denote by Sp(2𝑛) (rather than Sp(𝑛)) the 𝑛-th symplectic group for

𝑛 ∈ ℕ, as an algebraic group over a given base field.

For an integer 𝑛 > 0, an 𝑛- or ∞-category means an (𝑛, 1)- or (∞, 1)-category. For a

category (or a higher category) 𝒞 , and objects 𝑥, 𝑦 ∈ 𝒞 , write 𝒞(𝑥, 𝑦) for the set (or space)
of morphisms from 𝑥 to 𝑦 in 𝒞 . We freely use the language of higher category theory. For

example, functors into higher categories always mean higher functors; limits and colimits

in higher categories always mean homotopy limits and colimits; algebra objects in higher

categories are always homotopy coherent; and so on.

We deal with set-theoretic size issues following Lurie [105, §1.2.15], by assuming the fol-

lowing axiom of universes: For every set 𝑥 , there exists a Grothendieck universe 𝑈 such that

𝑥 ∈ 𝑈 . We use these universes implicitly. For example, ‘the category of sets’ refers to sets

living in a fixed but unspecified universe, whereas the category of these sets lives in a bigger

universe.
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Chapter 1

Introduction

1.1 Overview

1.1.1. Enumerative geometry is the geometric study of moduli spaces arising in algebraic geo-

metry and other areas of mathematics. From its early origins in ancient times up to the present

day, it has served as a rich source of inspiration and problems, contributing to the development

of many new geometric theories and methods.

The modern study of enumerative geometry began with, among others, the study of the

moduli space of holomorphic vector bundles on a compact Riemann surface. Foundational

works on this moduli space include the seminal works of Mumford [116], Harder and Narasim-

han [68], Atiyah and Bott [7], and others, spanning several decades.

The ideas and methods developed in these works are powerful and far-reaching, and con-

tinue to inspire new developments today in understanding more complicated moduli spaces,

such that the moduli of coherent sheaves on higher dimensional varieties. However, it has

remained true that moduli spaces of linear nature, such as those of vector bundles or sheaves,

are better understood than the non-linear ones, such as those of principal 𝐺-bundles where 𝐺
is an algebraic group that is not GL(𝑛), or SL(𝑛), etc.

One major difficulty with such moduli spaces is that they are often stacky, or that they

are more naturally seen as moduli stacks, meaning that their points can acquire non-trivial

automorphism groups. This often causes technical complexity in studying such moduli spaces,

which is, in some cases, more manageable in the linear case using the linear structure.
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1.1.2. The overall goal of this thesis is to take a first step in the enumerative study of non-

linear moduli stacks, drawing ideas from existing methods in linear enumerative geometry,

and extending those methods. This first step is to study orthosymplectic moduli spaces, such

that those of principal 𝐺-bundles when 𝐺 = O(𝑛) or Sp(𝑛).
Orthosymplectic moduli spaces are often closely related to the linear ones, making them

easier to study among the non-linear ones. On the other hand, by studying the orthosymplectic

case, we also gain insights on the behaviour of general non-linear stacks, which will lead us

to an intrinsic theory of enumerative geometry, which we describe in §1.5.1.

1.1.3. A central topic in enumerative geometry is the study of enumerative invariants, which

are numbers or other types of data constructed from the geometry of moduli spaces, usually

having an interpretation as counting points in such moduli spaces in a certain sense. See Kiem

[93] for a survey of the subject.

For example, when themoduli space is discrete, the number of points in themoduli space is

an enumerative invariant. As another example, when themoduli space is smooth and compact,

its fundamental class in homology is another enumerative invariant. More interesting cases

are those where the moduli space can be stacky and singular, where invariants are constructed

from different types of virtual geometry of the moduli space.

1.1.4. Many different flavours of enumerative invariants have been developed in the linear

case in the past decades. Notable examples include the following:

(i) Intersection pairings on moduli spaces of semistable vector bundles on Riemann sur-

faces. These were first computed by Witten [155] using physical methods, and rigor-

ously proved by Jeffrey and Kirwan [78] in the case of smooth moduli spaces, later

generalized by Jeffrey, Kiem, Kirwan, and Woolf [77] to the singular case. Another com-

putation was recently done by the author [24] using the framework of Joyce [86].

(ii) Invariants counting coherent sheaves on algebraic surfaces, sometimes called algebraic

Donaldson invariants. These can be seen as a generalization of the virtual fundamental

classes of Behrend and Fantechi [12] from Deligne–Mumford stacks to Artin stacks, and

were studied by Mochizuki [114], with recent developments by Joyce [86].

(iii) Donaldson–Thomas invariants counting coherent sheaves onCalabi–Yau threefolds. This
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theory was initiated by Donaldson and Thomas [53] and Thomas [145], and later de-

veloped by Behrend [10], Joyce [79–83], Joyce and Song [87], and Kontsevich and Soi-

belman [97], using motivic methods.

(iv) Cohomological Donaldson–Thomas theory, which can be seen as a categorification of

Donaldson–Thomas theory, where the invariants are vector spaces rather than numbers,

and are sometimes called BPS cohomology after the physicists Bogomol’nyi, Prasad, and

Sommerfield. This was conjecturally proposed by Kontsevich and Soibelman [98], and

rigorously understood through the works of Efimov [55], Meinhardt and Reineke [113],

and Davison and Meinhardt [44] in the linear case, and understood very recently in the

non-linear case by Hennecart [71; 72] and the author et al. [29].

(v) Categorical Donaldson–Thomas theory, which is a further categorification of cohomolo-

gical Donaldson–Thomas theory, where the invariants are categories rather than vector

spaces. This theory was recently developed in a series of works of Toda [148; 149] and

Pădurariu and Toda [120–128].

(vi) Vafa–Witten invariants counting Higgs sheaves on algebraic surfaces, arising from the

work of Vafa and Witten [154], and developed by Tanaka and Thomas [142; 143] and

Thomas [146].

(vii) Donaldson–Thomas theory for Calabi–Yau fourfolds, or the theory of DT4 invariants

counting coherent sheaves on Calabi–Yau fourfolds. With its foundations developed

by Cao and Leung [37], Borisov and Joyce [18], and Oh and Thomas [117; 118], the

theory has seen increasing interest recently.

However, until very recently, it had not been clear how to generalize any of these theories out-

side the linear case, except perhaps the case (i), which was discussed by Teleman and Wood-

ward [144].

1.1.5. A main difficulty that restricts many of the above theories to the linear case is the pres-

ence of strictly semistable points, or points in the moduli stack that have positive-dimensional

automorphism groups, making the moduli stack genuinely stacky. In this case, defining in-

variants usually requires heavy extra work. For many theories listed above, such technical

tools are only available in the linear case. See §1.2.6 below for more detailed examples of such

3



technical issues.

Note that when there are no strictly semistable points, that is, when the moduli stack is

Deligne–Mumford, we often do not need to restrict to the linear case, since the technical issues

mentioned above are not present.

1.1.6. This thesiswill mainly focus on developing an orthosymplectic version of the theory (iii)

above, that is, an orthosymplectic version of Donaldson–Thomas theory, as a first step towards

understanding general non-linear moduli stacks and their enumerative invariants, especially

how to deal with strictly semistable points in these cases.

During the preparation of this thesis, the author and his collaborators [29–32] haveworked

on a more general framework of enumerative geometry, which we call intrinsic enumerative

geometry, allowing the generalization of many results in this thesis to general non-linear mod-

uli stacks. We hope this framework will lead to more applications, which we discuss in §1.5.

1.2 Linear enumerative geometry

1.2.1. In this section, we sketch through the main ideas in existing theories of linear enumer-

ative geometry, such as those listed in §1.1.4. We will discuss generalizations of these ideas

outside the linear case in §§1.3–1.5 below.

We describe a general process that applies tomost variants of linear enumerative geometry,

and we outline the main technical difficulties in them, which we will be facing again when

trying to generalize them outside the linear case.

1.2.2. The setting. In linear enumerative geometry, we usually start with a linear category𝒜 ,

together with a moduli stack 𝒳 of objects in 𝒜 , whose points correspond to objects in 𝒜 .

Typical examples of such linear categories 𝒜 include:

• The category Coh(𝑌) of coherent sheaves on a smooth projective ℂ-variety 𝑌 .
• The categoryMod(ℂ𝑄) of representations of a quiver 𝑄 over ℂ, or its variants, such as

the categoryMod(ℂ𝑄/𝑊) of representations of 𝑄 with potential 𝑊 (see §4.1.7).

These examples of linear categories all come with natural choices of moduli stacks, which are

algebraic stacks over ℂ.
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As such a moduli stack 𝒳 often has infinitely many connected components, we usually

consider its decomposition

𝒳 = ∐
𝛼∈π0(𝒳)

𝒳𝛼 (1.2.2.1)

into connected components, and study invariants counting points in each component 𝒳𝛼 .

The set π0(𝒳) has the structure of a commutative monoid, induced by the direct sum in𝒜 .

We denote the monoid operation by +, and its unit by 0. The component𝒳0 ⊂ 𝒳 is usually a

single point {0}, and we have direct sum morphisms

⊕∶ 𝒳𝛼 × 𝒳𝛽 ⟶ 𝒳𝛼+𝛽 (1.2.2.2)

for 𝛼, 𝛽 ∈ π0(𝒳).

1.2.3. Stability conditions. A next ingredient in constructing enumerative invariants is a sta-

bility condition. This is needed because it can often happen that the components 𝒳𝛼 are not

quasi-compact, so that counting all points in them will not be meaningful, and we need to

decompose 𝒳𝛼 into smaller pieces that are quasi-compact.

A stability condition in this case can be defined as a map

𝜏 ∶ π0(𝒳) ∖ {0} ⟶ 𝑇

to some totally ordered set 𝑇 , satisfying certain conditions. For a point in𝒳𝛼 representing an

object 𝑥 ∈ 𝒜 , the value 𝜏(𝛼) is called the slope of 𝑥 . Such an object is called 𝜏 -semistable if

the slopes of its non-zero subobjects do not exceed its own slope. This condition determines

a semistable locus

𝒳 ss𝛼 (𝜏) ⊂ 𝒳𝛼 ,

which is an open substack, and is often quasi-compact.

Moreover, given this data, each object 𝑥 ∈ 𝒜 has a unique Harder–Narasimhan filtration,

which is a filtration in 𝒜 of the form

0 = 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑘 = 𝑥

𝑦1 𝑦2 𝑦𝑘 ,

 









 (1.2.3.1)

where each quotient 𝑦𝑖 = 𝑥𝑖/𝑥𝑖−1 is non-zero and 𝜏 -semistable, with 𝜏(𝑦1) > ⋯ > 𝜏(𝑦𝑘).

5



1.2.4. Stratifications. Geometrically, on the moduli stack, the existence and uniqueness of

Harder–Narasimhan filtrations correspond to a stratification

𝒳𝛼 = ⋃
𝛼=𝛼1+⋯+𝛼𝑛 :

𝜏(𝛼1)>⋯>𝜏(𝛼𝑛)

𝒳 ss𝛼1(𝜏) ∗ ⋯ ∗ 𝒳 ss𝛼𝑛(𝜏) , (1.2.4.1)

where 𝒳 ss𝛼1(𝜏) ∗ ⋯ ∗ 𝒳 ss𝛼𝑛(𝜏) denotes the stack of all filtrations in 𝒜 with stepwise quotients

lying in 𝒳 ss𝛼1(𝜏), … , 𝒳 ss𝛼𝑛(𝜏), in that order, and we run over all ways to write 𝛼 as a sum of

non-zero classes 𝛼𝑖 with decreasing slopes. This is usually a Θ-stratification in the sense of

Halpern-Leistner [65].

In light of the stratification (1.2.4.1), one might argue that to make sense of counting points

in𝒳𝛼 , wemay instead count points in the semistable loci𝒳 ss𝛼 (𝜏). In other words, we construct
enumerative invariants depending on 𝛼 and 𝜏 , based on the geometry of𝒳 ss𝛼 (𝜏), and this will
be a satisfactory answer to the question of counting points in 𝒳𝛼 .

1.2.5. Motivic relations. In the motivic setting, which is a main focus of this thesis, we can

directly obtain from (1.2.4.1) precise relations between the enumerative information of𝒳𝛼 and

the 𝒳 ss𝛼 (𝜏).
More precisely, we consider rings of motives, which are roughly rings generated by classes

[𝒵] of algebraic stacks𝒵 , with the cut-and-paste relations

[𝒵] = [𝒵 ′] + [𝒵 ∖𝒵 ′] (1.2.5.1)

for closed substacks𝒵 ′ ⊂ 𝒵 . The stratification (1.2.4.1) directly leads to the relation

[𝒳𝛼] = ∑
𝛼=𝛼1+⋯+𝛼𝑛 :

𝜏(𝛼1)>⋯>𝜏(𝛼𝑛)

[𝒳 ss𝛼1(𝜏)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏)] (1.2.5.2)

in the motivic Hall algebra, which we discuss in detail in Chapter 5, where ∗ denotes the

multiplication in the motivic Hall algebra, defined by taking the stack of filtrations with given

stepwise quotients, so that the product is equal to [𝒳 ss𝛼1(𝜏) ∗ ⋯ ∗ 𝒳 ss𝛼𝑛(𝜏)], the motive of the

stack of filtrations appearing in (1.2.5.2).

Relations like (1.2.5.2) are important tools in studying enumerative invariants, and can be

used to obtain wall-crossing formulae, which relate invariants defined for different stability

conditions 𝜏 . We will discuss this more in §1.4.7 below.
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1.2.6. Enumerative invariants. As we mentioned in §1.1.5, a major difficulty in constructing

invariants is that the semistable loci 𝒳 ss𝛼 (𝜏) might contain strictly semistable points, or points

with positive-dimensional automorphism groups, even if we ignore the copy of𝔾m present in

the automorphism group of every non-zero object as the scalar automorphisms.

The presence of strictly semistable points means that the moduli stack is genuinely stacky.

Inmany cases, this causes technical difficulty that requires heavy extrawork to deal with, often

involving further decompositions of the enumerative information of𝒳 ss𝛼 (𝜏) into even simpler

pieces which we finally call enumerative invariants. We demonstrate this in the following

examples:

Firstly, in the motivic setting, we would sometimes like to make sense of the Euler char-

acteristic of the moduli stack. Naïvely, we would like to define the Euler characteristic of

a quotient stack 𝑈/𝐺 to be 𝜒(𝑈/𝐺) = 𝜒(𝑈)/𝜒(𝐺), where 𝑈 is a scheme acted on by an

algebraic group 𝐺. However, this almost never works, since we have 𝜒(𝐺) = 0 for any al-

gebraic group 𝐺 of positive rank, so that we would have to define 𝜒(∗/𝐺) = ∞. To obtain a

finite number requires a heavy machinery developed by Joyce [79–83]. Roughly, we consider

a further decomposition

[𝒳 ss𝛼 (𝜏)] = ∑
𝛼=𝛼1+⋯+𝛼𝑛 :

𝜏(𝛼1)=⋯=𝜏(𝛼𝑛)

1
𝑛! ⋅ 𝜖𝛼1(𝜏) ∗ ⋯ ∗ 𝜖𝛼𝑛(𝜏) (1.2.6.1)

in the motivic Hall algebra, where the sum is over ordered partitions of 𝛼 into non-zero

classes 𝛼𝑖 of equal slope, and the epsilon motives 𝜖𝛼𝑖(𝜏) are uniquely determined by this re-

lation. The choice of the coefficients 1/𝑛! ensures that the motive 𝜖𝛼(𝜏), which is the lead-

ing term in (1.2.6.1), has a well-defined Euler characteristic (after multiplying by the motive

[𝔾m] to correct for the scalar automorphisms). We can read from (1.2.6.1) that the epsilon

motive 𝜖𝛼(𝜏) is the motive [𝒳 ss𝛼 (𝜏)] with certain parts removed on the strictly semistable

locus, and we regard it as a good representative of 𝒳 ss𝛼 (𝜏). The Donaldson–Thomas invari-

ants of Joyce and Song [87] are defined using epsilon motives.

Secondly, in the cohomological setting, this problem corresponds to the phenomenon that

the cohomology of𝒳 ss𝛼 (𝜏) can be infinite-dimensional. For example, we have H•(∗/𝔾m; ℚ) ≃
ℚ[𝑡], a free polynomial ring. To obtain finite-dimensional invariants, one considers decom-
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positions of the form

H(𝒳 ss𝛼 (𝜏)) = ⨁
𝛼=𝛼1+⋯+𝛼𝑛 :

𝜏(𝛼1)=⋯=𝜏(𝛼𝑛)

(BPS𝛼1(𝜏) ⊗⋯⊗ BPS𝛼𝑛(𝜏) ⊗ ℚ[𝑡1, … , 𝑡𝑛])
Aut(𝛼1,…,𝛼𝑛) ,

(1.2.6.2)

where H denotes either rational cohomology, or its certain variants, the sum is over unordered

partitions of 𝛼 into non-zero classes 𝛼𝑖 of equal slope, and Aut(𝛼1, … , 𝛼𝑛) is the group of per-

mutations of {1,… , 𝑛} that preserve the sequence (𝛼1, … , 𝛼𝑛). The spaces BPS𝛼(𝜏) are finite-
dimensional, sometimes called BPS cohomology, and we regard them as good cohomological

representations of 𝒳 ss𝛼 (𝜏). This type of decompositions were conjectured by Kontsevich and

Soibelman [98], and proved in different generalities by Efimov [55], Davison and Meinhardt

[44], Hennecart [71; 72], and the author et al. [29].

Thirdly, in the homological setting, we would like to define a generalized version of virtual

fundamental classes of 𝒳 ss𝛼 (𝜏). Such a construction is not directly available in the presence

of strictly semistable points. The works of Mochizuki [114] and Joyce [86] deal with this by

constructing an auxiliary moduli space of Bradlow pairs after Bradlow [20], which contains

no strictly semistable points, then transporting the virtual fundamental classes there to the

original moduli space. It would be interesting to explore whether this approach has an inter-

pretation as a decomposition-type construction similar to the previous cases.

1.3 Orthosymplectic enumerative geometry

1.3.1. The main subject of this thesis is orthosymplectic enumerative geometry, extending the

techniques and constructions in linear enumerative geometry discussed above to the case of

moduli stacks of orthogonal or symplectic objects. We see this as a first step towards a further

generalization to more general algebraic stacks.

1.3.2. Self-dual linear categories. We now introduce the basic set-up of orthosymplectic enu-

merative geometry. We start with a linear category𝒜 as in §1.2.2, equipped with the following

data:

(i) A contravariant involution (−)∨ ∶ 𝒜 ∼→ 𝒜 op.

(ii) A natural isomorphism 𝜂∶ id𝒜 ∼⇒ (−)∨∨, satisfying compatibility conditions.
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For example, 𝒜 could be the category of vector bundles on a smooth projective curve, where

the involution (−)∨ is given by taking the dual bundle, and the natural isomorphism 𝜂 can be

chosen to be 𝜀 = ±1 times the usual identification.

In this case, we have the notion of a self-dual object of 𝒜 , defined as a pair (𝑥, 𝜙), where
𝑥 ∈ 𝒜 is an object, and 𝜙 ∶ 𝑥 ∼→ 𝑥∨ is an isomorphism satisfying 𝜙 = 𝜙∨. We have a

groupoid𝒜 sd of such self-dual objects. For example, in the case of vector bundles,𝒜 sd consists

of either orthogonal or symplectic vector bundles, depending on the choice of the sign 𝜀 = ±1
mentioned above, which is a part of the data of the involution.

Note that 𝒜 cannot be taken to be the category of coherent sheaves on a smooth project-

ive variety of positive dimension, as it is not equivalent to its dual category. See §2.1.6 for

explanations, and see §1.4.3 for a modification that fits into our framework.

1.3.3. Moduli stacks. In the setting above, suppose that we are given a moduli stack 𝒳 of

objects in 𝒜 . Then the involution on 𝒜 induces a ℤ2-action on 𝒳 , whose (stack-theoretic, or

2-categorical) fixed locus 𝒳 sd = 𝒳ℤ2 is the moduli stack of objects in 𝒜 sd.

Again, we consider the decomposition

𝒳 sd = ∐
𝜃∈π0(𝒳 sd)

𝒳 sd
𝜃 (1.3.3.1)

into connected components. We also often consider the monoid action

⊕sd ∶ 𝒳 × 𝒳 sd ⟶ 𝒳 sd ,
(𝑥, 𝑦) ⟼ 𝑥 ⊕ 𝑦 ⊕ 𝑥∨ , (1.3.3.2)

where we equip 𝑥⊕𝑦⊕𝑥∨ with the induced self-dual structure. This action, or other construc-

tions of similar nature, will often give rise to modules for various algebras defined from𝒳 . For

example, in §5.4, we will use a variant of this action to define the motivic Hall module for the

motivic Hall algebra associated to 𝒳 .

In particular, the set π0(𝒳 sd) also acquires an action by the monoid π0(𝒳), which we

denote simply by (𝛼, 𝜃) ↦ 𝛼 + 𝜃 + 𝛼∨ for 𝛼 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd).
We remark that although the stack𝒳 sd and the set π0(𝒳 sd) also carry commutative mon-

oid structures given by the direct sum, these structures are less often used in this thesis.
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1.3.4. Stability conditions. Now, suppose that we have a stability condition 𝜏 on 𝒜 , as in

§1.2.3. We also assume that 𝜏 is compatible with the self-dual structure, in that 𝜏(𝑥∨) = −𝜏(𝑥)
for all non-zero objects 𝑥 ∈ 𝒜 , where 𝑡 ↦ −𝑡 is an order-reversing involution of the totally

ordered set 𝑇 , where 𝜏 is valued in. Assume that there is a unique element 0 ∈ 𝑇 fixed by this

involution.

Then, for any non-zero self-dual object (𝑥, 𝜙) ∈ 𝒜 sd, we necessarily have 𝜏(𝑥) = 0, and
in the Harder–Narasimhan filtration

0 = 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑘 = 𝑥

𝑦1 𝑦2 𝑦𝑘

 








 (1.3.4.1)

of 𝑥 , the self-dual structure 𝜙 induces isomorphisms 𝑦𝑖 ∼→ 𝑦∨𝑘+1−𝑖 of the factors. In particular,

if 𝑘 is odd, the middle factor 𝑦(𝑘+1)/2 admits an induced self-dual structure. For convenience,

when 𝑘 is even, we sometimes think of it as having the zero self-dual object as the middle

factor.

Therefore, heuristically speaking, if we think of objects of 𝒜 as composed of semistable

objects via Harder–Narasimhan filtrations as in §1.2.3, we should think of an object of 𝒜 sd as

composed of a series of semistable objects of𝒜 , which are those in the left half of the Harder–

Narasimhan filtration, together with a single semistable self-dual object in 𝒜 sd in the middle,

allowed to be zero; the factors in the right half are dual to those on the left, and do not contain

new information.

1.3.5. Stratifications. Geometrically, similarly to §1.2.4, the existence and uniqueness of

Harder–Narasimhan filtrations correspond to a stratification

𝒳 sd
𝜃 = ⋃

𝜃=𝛼1+𝛼∨1 +⋯+𝛼𝑛+𝛼∨𝑛 +𝜌∶
𝜏(𝛼1)>⋯>𝜏(𝛼𝑛)>0

𝒳 ss𝛼1(𝜏) ⋄⋯ ⋄ 𝒳 ss𝛼𝑛(𝜏) ⋄ 𝒳 sd,ss𝜌 (𝜏) , (1.3.5.1)

where we run over classes 𝛼𝑖 ∈ π0(𝒳)∖{0} and 𝜌 ∈ π0(𝒳 sd), and we allow 𝑛 = 0, giving the
leading term, the semistable locus𝒳 sd,ss

𝜃 (𝜏). We denote by𝒳 ss𝛼1(𝜏)⋄⋯⋄𝒳 ss𝛼𝑛(𝜏)⋄𝒳 sd,ss𝜌 (𝜏) the
stack of self-dual filtrations, or filtrations of the form in §1.3.4, with stepwise quotients lying in

𝒳 ss𝛼1(𝜏),… , 𝒳 ss𝛼𝑛(𝜏), 𝒳 sd,ss𝜌 (𝜏), 𝒳 ss
𝛼∨𝑛 (𝜏),… , 𝒳 ss

𝛼∨1 (𝜏), in that order, where we allow the middle

term of the filtration to be zero. As in the linear case, this is also usually a Θ-stratification.
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Again, similarly to §1.2.5, the stratification (1.3.5.1) implies the motivic relation

[𝒳 sd
𝜃 ] = ∑

𝜃=𝛼1+𝛼∨1 +⋯+𝛼𝑛+𝛼∨𝑛 +𝜌∶
𝜏(𝛼1)>⋯>𝜏(𝛼𝑛)>0

[𝒳 ss𝛼1(𝜏)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏)] ⋄ [𝒳 sd,ss𝜌 (𝜏)] (1.3.5.2)

in the motivic Hall module for the motivic Hall algebra, which we introduce in Chapter 5, and

this will be important for studying orthosymplectic enumerative invariants.

1.3.6. Enumerative invariants. We now explain how to construct enumerative invariants in

the orthosymplectic case, in the presence of strictly semistable points, parallel to the descrip-

tions in §1.2.6.

Firstly, in the motivic setting, which is the main focus of this thesis, we roughly consider

a further decomposition

[𝒳 sd,ss
𝜃 (𝜏)] = ∑

𝜃=𝛼1+𝛼∨1 +⋯+𝛼𝑛+𝛼∨𝑛 +𝜌∶
𝜏(𝛼1)=⋯=𝜏(𝛼𝑛)=0

1
2𝑛𝑛! ⋅ 𝜖𝛼1(𝜏) ⋄⋯ ⋄ 𝜖𝛼𝑛(𝜏) ⋄ 𝜖sd𝜌 (𝜏) (1.3.6.1)

in the motivic Hall module, which is parallel to the decomposition (1.2.6.1) in the linear

case. The epsilon motives 𝜖𝛼𝑖(𝜏) are the ones defined in the linear case, and the new epsi-

lon motives 𝜖sd𝜃 (𝜏), defined by the relation (1.3.6.1), are one of the main constructions of this

thesis, which we will use to define orthosymplectic Donaldson–Thomas invariants, and the

choice of the coefficients 1/2𝑛𝑛! ensure that they have well-defined Euler characteristics. See

Chapter 5 for details.

Secondly, in the cohomological setting, we hope to obtain decompositions of the form

H(𝒳 sd,ss
𝜃 (𝜏)) =

⨁
𝛼=𝛼1+𝛼∨1 +⋯+𝛼𝑛+𝛼∨𝑛 +𝜌∶

𝜏(𝛼1)=⋯=𝜏(𝛼𝑛)=0

(BPS𝛼1(𝜏) ⊗⋯⊗ BPS𝛼𝑛(𝜏) ⊗ BPSsd𝜌 (𝜏) ⊗ ℚ[𝑡1, … , 𝑡𝑛])
Autsd(𝛼1,…,𝛼𝑛) ,

(1.3.6.2)

whereAutsd(𝛼1, … , 𝛼𝑛) is the group ofℤ2-equivariant permutations of the set {1, 1∨, … , 𝑛, 𝑛∨},
where the ℤ2-action exchanges each pair (𝑖, 𝑖∨), such that the sequence (𝛼1, 𝛼∨1 , … , 𝛼𝑛, 𝛼∨𝑛 )
remains unchanged after the permutation. The spaces BPSsd𝜃 (𝜏) are finite-dimensional, some-

times called BPS cohomology, and are regarded as the cohomological enumerative invariants

in this setting. Such decompositions were first conjectured by Young [159], and then partially
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proved in different generalities as special cases of the results of Hennecart [71; 72] and the

author et al. [29], and we refer to these works for details.

Thirdly, in the homological setting, the author’s preprint [26] attempts to formulate a pre-

cise statement about how the invariants should behave, and constructs these invariants in the

case of self-dual quivers, although we are not yet able to verify that these invariants satisfy all

the expected properties.

1.3.7. Graded and filtered points. A helpful framework for studying enumerative geometry

outside the linear case, and for finding the correct generalizations of notions from the linear

case, is the theory of stacks of graded and filtered points due to Halpern-Leistner [65].

For an algebraic stack 𝒳 , its stacks of graded and filtered points are defined as mapping

stacks

𝒢rad(𝒳) = ℳap(∗/𝔾m, 𝒳) , (1.3.7.1)

ℱilt(𝒳) = ℳap(𝔸1/𝔾m, 𝒳) , (1.3.7.2)

where 𝔾m acts on 𝔸1 by scaling. See §3.2 for details.

For example, in the linear case, if 𝒳 is the moduli stack of objects in a linear category 𝒜 ,

then 𝒢rad(𝒳) and ℱilt(𝒳) are usually the stack of ℤ-graded objects and the stack of ℤ-
indexed filtrations in 𝒜 , respectively.

In the orthosymplectic case, we consider the moduli stack 𝒳 sd of self-dual objects in a

self-dual linear category 𝒜 . In this case, 𝒢rad(𝒳 sd) is usually the stack of self-dual objects

(𝐸, 𝜙) ∈ 𝒜 sd, equipped with ℤ-gradings 𝐸 = ⨁𝑖∈ℤ 𝐸𝑖, such that 𝜙(𝐸𝑖) = 𝐸∨−𝑖 for all 𝑖. Equi-
valently, this is the information of a series of objects (𝐸𝑖)𝑖>0, together with a single self-dual

object (𝐸0, 𝜙0). The stack ℱilt(𝒳 sd) can also be described as the stack of self-dual filtrations

indexed by ℤ, similar to those appearing in §1.3.4. See §3.4 for details.

1.4 Main results

1.4.1. Orthosymplectic Donaldson–Thomas invariants. As mentioned above, the main con-

structions of this thesis are those of orthosymplectic Donaldson–Thomas invariants, including

a numeric version and an enhanced, motivic version, which we discuss in Chapters 5 and 6,
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respectively.

More precisely, recall from §1.2.6 and §1.3.6 the epsilon motives 𝜖𝛼(𝜏) and 𝜖sd𝜃 (𝜏). The

linear and orthosymplectic Donaldson–Thomas invariants are defined by the formulae

DT𝛼(𝜏) = ∫𝒳𝛼
(1 − 𝕃) ⋅ 𝜖𝛼(𝜏) ⋅ 𝜈𝒳 𝑑𝜒 , (1.4.1.1)

DTsd
𝜃 (𝜏) = ∫𝒳 sd

𝜃
𝜖sd𝜃 (𝜏) ⋅ 𝜈𝒳 sd 𝑑𝜒 , (1.4.1.2)

respectively, where ∫(−) 𝑑𝜒 denotes taking the weighted Euler characteristic, and 𝜈(−) de-
notes the Behrend function of a stack. The extra factor (1 − 𝕃) roughly accounts for the fact

that in the linear case, every non-zero object has a copy of 𝔾m in its automorphism group,

given by scalar automorphisms, whereas this is not the case for orthosymplectic objects. See

§5.1 for more explanations of these definitions.

1.4.2. Invariants for quivers. A basic example of our theory is the construction of orthosym-

plectic Donaldson–Thomas invariants for self-dual quivers with potential, which we discuss

in §4.1 and §8.1. These invariants are an orthosymplectic analogue of the usual Donaldson–

Thomas theory for quivers with potential, studied in Joyce and Song [87, Ch. 7] and Kontsevich

and Soibelman [97, §8]. Self-dual quivers were first introduced by Derksen and Weyman [49],

and studied by Young [157–159] in the context of enumerative geometry.

Roughly speaking, a self-dual quiver is a quiver𝑄 equippedwith a contravariant involution

(−)∨ ∶ 𝑄 ≃ 𝑄op, where 𝑄op is the opposite quiver of 𝑄, obtained from 𝑄 by reversing the

direction of arrows. For example, we could take the quiver

𝑄 = (
•

• •
•



  ) ,

with the involution (−)∨ given by horizontal flipping. The involution induces a self-dual

structure on the abelian category of representations of 𝑄, which, in the above example, is

roughly given by

𝐸2 𝐸∨2

𝐸1 𝐸4 𝐸∨4 𝐸∨1 ,

𝐸3 𝐸∨3


𝑒24


𝑒∨12𝑒12

𝑒13

 (−)∨
𝑒∨24

𝑒∨34


𝑒34


𝑒∨13
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where 𝐸𝑖 are vector spaces and 𝑒𝑖𝑗 are linear maps. See §4.1 for the precise set-up. We are then

interested in representations that are self-dual, meaning in the above example that 𝐸4 ≃ 𝐸∨1 ,

and that there are self-dual structures on the vector spaces 𝐸2 and 𝐸3, together with conditions

on the morphisms 𝑒𝑖𝑗 . The theory also works for quivers with potential.

This can be regarded as a local model for counting orthosymplectic sheaves on varieties,

which we will discuss below.

We also provide an algorithm for computing Donaldson–Thomas invariants for self-dual

quivers when the potential is zero, and present some numerical results. We mention a relation

between self-dual quivers and orthosymplectic coherent sheaves in Example 8.2.5.

1.4.3. Invariants for threefolds. Another main example of our theory is the construction of

Donaldson–Thomas invariants counting orthosymplectic complexes on Calabi–Yau threefolds,

which are perfect complexes of coherent sheaves equipped with self-dual structures. These are

an orthosymplectic version of the usual Donaldson–Thomas theory counting coherent sheaves

on Calabi–Yau threefolds, studied by Thomas [145], Joyce and Song [87], and Kontsevich and

Soibelman [97].

As mentioned in §1.3.2, the category of coherent sheaves on a Calabi–Yau threefold does

not fit into our framework, and we use an alternative approach involving the derived category

of coherent sheaves, which we describe below.

For a smooth projective Calabi–Yau threefold 𝑌 over ℂ, we consider a Bridgeland stability
condition 𝜏 = (𝑍, 𝒫 ) on 𝑌 in the sense of Bridgeland [22], such that it is compatible with

a chosen self-dual structure on the derived category DbCoh(𝑌). Then there is an abelian

subcategory

𝒫 (0) ⊂ DbCoh(𝑌)

of semistable objects of slope 0, which inherits a self-dual structure. We then define invariants

counting self-dual objects in this category, or 𝜏 -semistable orthosymplectic complexes. See §4.2

and §8.3 for more details.

We expect that these invariants are related to counting D-branes in string theories on

Calabi–Yau 3-orientifolds, discussed in, for example, Witten [156, §5.2], Diaconescu, Garcia-

Raboso, Karp, and Sinha [52], and Hori and Walcher [74].
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1.4.4. Invariants for curves and surfaces. We also introduce the following invariants similar

to the above construction for threefolds.

For an algebraic curve 𝐶 over a field, we define Donaldson–Thomas invariants counting

semistable orthogonal or symplectic bundles on 𝐶 , analogous to the motivic invariants count-

ing semistable vector bundles considered by Joyce [83, §6.3]. We discuss this in §8.2.

For an algebraic surface 𝑆 overℂwhich is either a del Pezzo, K3, or abelian surface, we also

define motivic Vafa–Witten type invariants counting orthosymplectic Higgs complexes on 𝑆,
which is similar to the Vafa–Witten invariants of Tanaka and Thomas [142; 143], although we

work in the motivic setting, which is different from their approach using equivariant localiza-

tion. We discuss this in §4.3 and §8.4. The main reason for restricting to this class of surfaces is

that we do not know how to construct Bridgeland stability conditions on the derived category

of Higgs sheaves on 𝑆 if 𝑆 is of general type, and such stability conditions are crucial in our

approach, as discussed in §1.4.3.

1.4.5. In the rest of this section, we outline a few key general results proved in this thesis that

apply to all of the above settings, which are used in constructing the invariants and studying

their properties.

1.4.6. The no-pole theorem. The first such result is the no-pole theorem, Theorem 5.5.5, which

is a key property of the epsilon motives 𝜖𝛼(𝜏) and 𝜖sd𝜃 (𝜏). It is roughly the statement that the

Euler characteristics (1.4.1.1)–(1.4.1.2) are finite, which is a non-trivial property in light of the

discussions in §1.2.6. Proving this property is the main technical difficulty in showing that our

invariants are well-defined.

In the linear case, this result was proved by Joyce [81, Theorem 8.7] under a slightly dif-

ferent setting, and the orthosymplectic case of this theorem is a main result of this thesis.

1.4.7. Wall-crossing formulae. A key property of our orthosymplectic Donaldson–Thomas

invariants is that they satisfywall-crossing formulae, Theorem 7.3.2, which relate the invariants

for different stability conditions.

More precisely, for stability conditions 𝜏+ and 𝜏−, under certain assumptions, we prove
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relations of the form

DT𝛼(𝜏−) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝐶(𝛼1, … , 𝛼𝑛) ⋅ DT𝛼1(𝜏+)⋯DT𝛼𝑛(𝜏+) , (1.4.7.1)

DTsd
𝜃 (𝜏−) = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}; 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌

𝐶′(𝛼1, … , 𝛼𝑛) ⋅ DT𝛼1(𝜏+)⋯DT𝛼𝑛(𝜏+) ⋅ DTsd
𝜌 (𝜏+) , (1.4.7.2)

where 𝐶(…) and 𝐶′(…) are certain combinatorial coefficients. The linear case (1.4.7.1) was

first obtained by Joyce and Song [87, Theorem 5.18] in the case of counting coherent sheaves

on Calabi–Yau threefolds, and the orthosymplectic case (1.4.7.2) is a main result of this thesis.

Furthermore, in §7.5, we prove a similar result for wall-crossing in derived categories,

where we compare invariants for two Bridgeland stability conditions that are close enough

in the space of stability conditions, and we show that wall-crossing formulae hold in this case.

Wall-crossing formulae are important, because they impose a very strong constraint on the

structure of the invariants, and can sometimes be used to compute the invariants directly, or

to obtain very strong properties of the invariants. See, for example, Feyzbakhsh and Thomas

[57–60] for a series of applications of this type in the linear case.

Moreover, we hope that other flavours of enumerative invariants, such as the quasi-smooth

invariants mentioned in §1.1.4 (i), (ii), should exhibit the same wall-crossing behaviour, in that

they should satisfy wall-crossing formulae with the same combinatorial coefficients. This

phenomenon was already observed in the linear case by Gross, Joyce, and Tanaka [63] and

Joyce [86]. See also the author [24] and Bojko, Lim, and Moreira [16] for applications of the

wall-crossing formulae for quasi-smooth invariants in the linear case. Assuming that this

phenomenon generalizes to the orthosymplectic case or more general cases, we can hope to

predict the behaviour of these invariants, or even compute them, without necessarily having

a general construction of the invariants.

1.4.8. The integral identity. A key technical ingredient in the proof of wall-crossing formulae

for our Donaldson–Thomas invariants is themotivic integral identity for the Behrend functions

that appear in the definitions of the invariants, (7.3.2.1)–(7.3.2.2).

In the linear case, the integral identity is the statement that the motivic version 𝜈mot
𝒳 of the
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Behrend function of 𝒳 should satisfy, roughly, the relation

𝜈mot
𝒳 (𝑦) ⋅ 𝜈mot

𝒳 (𝑧) = 𝕃−𝑑/2 ⋅ ∫
0→𝑦→𝑥→𝑧→0

𝜈mot
𝒳 (𝑥) 𝑑𝑥 (1.4.8.1)

for given 𝑦, 𝑧 ∈ 𝒳 , where the integral is a motivic integral in the sense of §5.2.6, taken over

the space of short exact sequences 0 → 𝑦 → 𝑥 → 𝑧 → 0, and 𝑑 is the virtual dimension of this

space. This was conjectured by Kontsevich and Soibelman [97, Conjecture 4], and later proved

by Lê [101]; a numerical version was proved earlier by Joyce and Song [87, Theorem 5.11] to

obtain wall-crossing formulae for Donaldson–Thomas invariants.

In this thesis, we prove a more general version of the integral identity, Theorem 7.4.2,

which works for a general class of (−1)-shifted symplectic stacks. It states that we have

𝜈mot
𝒢rad(𝒳) = 𝕃−𝑑/2 ⋅ gr! ∘ ev∗(𝜈mot

𝒳 ) , (1.4.8.2)

where we consider the attractor correspondence

𝒢rad(𝒳) gr⟵ ℱilt(𝒳) ev⟶ 𝒳 , (1.4.8.3)

where 𝒢rad(𝒳) and ℱilt(𝒳) are the stacks of graded and filtered points introduced in §1.3.7.

In (1.4.8.2), the pushforward gr! can be interpreted as integrating along the fibres of gr.

For example, in the linear case, each fibre of gr consists of filtrations with given graded quo-

tients, and restricting to a connected component of ℱilt(𝒳) where all filtrations are two-step
filtrations gives the statement (1.4.8.1).

Similarly, in the orthosymplectic case, the integral identity (1.4.8.2) can be written more

explicitly, roughly as

𝜈mot
𝒳 (𝑦) ⋅ 𝜈mot

𝒳 sd(𝑧) = 𝕃−𝑑/2 ⋅ ∫
3-step self-dual filtrations

0=𝑥0⊂𝑥1⊂𝑥2⊂𝑥3=𝑥
with quotients 𝑦 , 𝑧, 𝑦∨

𝜈mot
𝒳 sd(𝑥) 𝑑𝑥 (1.4.8.4)

for given 𝑦 ∈ 𝒳 and 𝑧 ∈ 𝒳 sd, where 𝑑 is the virtual dimension of the space of such self-dual

filtrations. See also §2.2.4 for details on self-dual filtrations.

Our result is stronger than previous works on this topic mentioned above, as we are able to

remove a technical assumption on weights which is not necessarily satisfied outside the linear

case; see Theorem B.2.1 for details. This result will later also be used in a future work [32] to
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prove wall-crossing formulae for intrinsic Donaldson–Thomas invariants, which we discuss in

§1.5.1 below.

1.5 Future directions

1.5.1. Intrinsic enumerative geometry. A natural direction to go from the above discussion is

to further generalize this theory to more general algebraic stacks.

A satisfactory answer is already available as a framework that we would call intrinsic enu-

merative geometry, developed very recently by the author and collaborators [29–32], based on

ideas from the author’s earlier preprints [25; 26] on orthosymplectic enumerative geometry

andHalpern-Leistner’s formalism [65] generalizing important ideas in geometric invariant the-

ory from quotient stacks to general algebraic stacks, involving the notions of stacks of graded

and filtered points, Θ-stratifications, etc.
Substantial progress has already been made in this framework, including defining enumer-

ative invariants in the flavours of §1.1.4 (iii), (iv) for more general stacks, and studying their

properties. We hope that this framework will lead to more applications, such as generalizing

other types of invariants in §1.1.4, or even applying the framework to other algebraic stacks,

such as those arising from Gromov–Witten theory or from 𝐾 -stability.

1.5.2. Quasi-smooth invariants. One possible direction for future work is to construct enu-

merative invariants that generalize the virtual fundamental class from Deligne–Mumford

stacks to Artin stacks, in the style of §1.1.4 (i), (ii). One obstacle here is that the approach

of Joyce [86] using stable pairs does not seem to easily generalize outside the linear case, so

more work or a replacement approach is needed.

In the case of principal bundles on curves, Teleman and Woodward [144] recover the con-

jectural formula of Witten [155] as a large level limit of 𝐾 -theoretic indices. It would be

interesting to explore connections of their approach with the intrinsic framework discussed

in §1.5.1. Additionally, in the case of GL(𝑛), the author [24] obtained a formula involving a

regularized divergent series. It would be interesting to explore whether a similar formula can

be obtained for more general groups.
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1.5.3. Vafa–Witten invariants. Another possible direction is to generalize the theory of Vafa–

Witten invariants of Tanaka and Thomas [142; 143], mentioned in §1.1.4 (vi), to the orthosym-

plectic case. In the linear case, these invariants count coherent sheaves on surfaces equipped

with Higgs fields, or Higgs sheaves. An orthosymplectic analogue of such Higgs sheaves is

what we call orthosymplectic Higgs complexes, which we discuss in §4.3 and §8.4, defined using

certain Bridgeland stability conditions. Although this thesis constructs a motivic version of

Vafa–Witten invariants, we have not yet been able to construct invariants in the same flavour

of Tanaka and Thomas using torus localization, and this is a possible direction for future work.

1.5.4. DT4 invariants. A perhaps more difficult problem is to construct DT4 invariants, men-

tioned in §1.1.4 (vii), in the orthosymplectic case and the general case, although even the linear

case is not entirely understood yet. These invariants behave somewhat similarly to the quasi-

smooth invariants discussed in §1.5.2, and it seems likely that a replacement of stable pairs

mentioned there would also help with this case.

1.5.5. Duality. In many of the flavours of enumerative invariants above, it is often interesting

to explore various types of duality relations between invariants for Langlands dual groups. The

orthosymplectic setting of this thesis includes an interesting pair of dual groups, SO(2𝑛 + 1)
and Sp(2𝑛), where one can hope to explore such duality relations.

1.5.6. Relations with Gromov–Witten theory. Using orthosymplectic Donaldson–Thomas

invariants for a Calabi–Yau threefold 𝑌 , as in §1.4.3, we can expect to obtain curve-counting

invariants by choosing a suitable self-dual structure on DbCoh(𝑌), then counting self-dual

complexes supported on curves. For a summary of similar constructions in the linear case, see

Pandharipande and Thomas [129]. We also hope to be able to compare these invariants with

Gromov–Witten invariants in the style of Maulik, Nekrasov, Okounkov, and Pandharipande

[110; 111].
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Chapter 2

Self-dual categories

This chapter introduces the basic setting of orthosymplectic enumerative geometry, including

the notions of self-dual linear categories and self-dual objects in such categories, which we

already briefly discussed in §1.3.2. We will provide detailed examples in Chapter 4 below, and

the reader is recommended to refer to those examples to assist with understanding the abstract

set-up in this chapter. For background on the basic theory of additive, abelian, triangulated,

and derived categories, we refer to Mac Lane [109] and Gelfand and Manin [61].

The main focus of this thesis later on will be to construct and study orthosymplectic enu-

merative invariants counting such self-dual objects, based on the geometry of moduli stacks

of these objects, which we will introduce in Chapter 3.

2.1 Self-dual linear categories

2.1.1. Linear categories. Let 𝐾 be a field, which we fix throughout this chapter.

By a 𝐾 -linear category, we mean an additive category 𝒜 (see, for example, Mac Lane [109,

§VIII.2]), together with the structure of a 𝐾 -vector space on the set of morphisms𝒜(𝑥, 𝑦) for
every pair of objects 𝑥, 𝑦 ∈ 𝒜 , such that addition of vectors agrees with addition ofmorphisms

using the additive category structure, and the composition map

∘ ∶ 𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) ⟶ 𝒜(𝑥, 𝑧)

is 𝐾 -bilinear for any 𝑥, 𝑦, 𝑧 ∈ 𝒜 .

Examples of 𝐾 -linear categories include the category of 𝐾 -vector spaces, the category of
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modules over a 𝐾 -algebra, the category of coherent sheaves on a 𝐾 -scheme, etc.

2.1.2. Self-dual linear categories. For a𝐾 -linear category𝒜 , define a self-dual structure on𝒜
to be the following data:

(i) An equivalence of 𝐾 -linear categories

(−)∨ ∶ 𝒜 ∼⟶ 𝒜 op , (2.1.2.1)

called the dual functor.

(ii) A natural isomorphism

𝜂∶ id𝒜 ∼⟹ (−)∨∨ , (2.1.2.2)

such that for any object 𝑥 ∈ 𝒜 , we have 𝜂𝑥∨ = (𝜂∨𝑥)−1 ∶ 𝑥∨ ∼→ 𝑥∨∨∨.

A self-dual 𝐾 -linear category is a 𝐾 -linear category equipped with a self-dual structure.

Given a self-dual 𝐾 -linear category 𝒜 , define a self-dual object in 𝒜 to be a pair (𝑥, 𝜙),
where 𝑥 ∈ 𝒜 and 𝜙 ∶ 𝑥 ∼→ 𝑥∨ is an isomorphism, such that 𝜙 = 𝜙∨ ∘ 𝜂𝑥 :

𝑥
𝑥∨ .

𝑥∨∨


𝜙

∼



𝜂𝑥 ∼ 
𝜙∨∼

We denote by𝒜 sd the groupoid of self-dual objects in𝒜 , where morphisms are isomorphisms

in 𝒜 compatible with the self-dual structures.

More conceptually, a self-dual 𝐾 -linear category can be defined as a fixed point of the

ℤ2-action on the 2-category of 𝐾 -linear categories given by taking the opposite category, and

a self-dual object in a self-dual 𝐾 -linear category 𝒜 is a fixed point of the ℤ2-action on the

underlying groupoid of 𝒜 given by the dual functor (−)∨.

2.1.3. The hyperbolic self-dual object. Let𝒜 be a self-dual 𝐾 -linear category, and let 𝑥 ∈ 𝒜
be an object. Then there is a self-dual object (𝑥 ⊕ 𝑥∨, 𝜙) ∈ 𝒜 sd, with the hyperbolic self-dual

structure given by

𝜙 = ( 0 id𝑥∨

𝜂𝑥 0
)∶ 𝑥 ⊕ 𝑥∨ ∼⟶ 𝑥∨ ⊕ 𝑥∨∨ . (2.1.3.1)
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2.1.4. Example. Vector bundles. Let 𝑋 be a 𝐾 -scheme, and let 𝒜 = Vect(𝑋) be the 𝐾 -linear

category of vector bundles on 𝑋 of finite rank.

For each choice of a sign 𝜀 ∈ {±1}, there is a self-dual structure (−)∨ ∶ 𝒜 ∼→ 𝒜 op sending

a vector bundle to its dual vector bundle, with the natural isomorphism 𝜂∶ (−)∨∨ ∼⇒ id𝒜 given

by 𝜀 times the usual identification.

A self-dual object in 𝒜 is a pair (𝐸, 𝜙), where 𝐸 is a vector bundle on 𝑋 , and 𝜙 ∶ 𝐸 ∼→ 𝐸∨

is an isomorphism, satisfying 𝜙∨ = 𝜙 ∘ 𝜂𝐸 . Equivalently, 𝜙 is a non-degenerate symmetric

(or antisymmetric) bilinear form on 𝐸 when 𝜀 = +1 (or −1). In particular, if 𝐾 is algebraically

closed of characteristic ≠ 2, then self-dual objects of 𝒜 can be identified with principal O(𝑛)-
bundles (or Sp(𝑛)-bundles) on 𝑋 .

2.1.5. Example. Self-dual quivers. Let 𝑄 be a self-dual quiver, that is, a quiver with an invol-

ution 𝜎 ∶ 𝑄 ∼→ 𝑄op, where 𝑄op is the opposite quiver of 𝑄. This notion was due to Derksen

and Weyman [49] and Young [157–159]. See §4.1 for details.

Let𝒜 = Mod(𝐾𝑄) be the𝐾 -linear abelian category of finite-dimensional representations

of 𝑄 over 𝐾 . There is a self-dual structure (−)∨ ∶ 𝒜 ∼→ 𝒜 op sending a representation to the

representation with the dual vector spaces and dual linear maps. This also involves choosing

signs when defining 𝜂∶ (−)∨∨ ∼⇒ id𝒜 , as in the previous example. Again, see §4.1 for details.

Self-dual objects in 𝒜 are called self-dual representations of 𝑄, which we think of as ana-

logues of orthogonal or symplectic bundles in the quiver setting.

2.1.6. Non-example. Coherent sheaves. Let 𝑋 be a connected, smooth, projective 𝐾 -variety

of positive dimension, and let𝒜 = Coh(𝑋) be the abelian category of coherent sheaves on𝑋 .

Then 𝒜 does not admit a self-dual structure. This is because 𝒜 is noetherian, meaning

that every ascending chain of subobjects of a given object stabilizes, while it is not artinian,

in that there exists an infinite descending chain of subobjects 𝒪𝑋 ⊃ 𝒪𝑋 (−1) ⊃ 𝒪𝑋 (−2) ⊃ ⋯.

Since taking the opposite category exchanges the properties of being noetherian and artinian,

the category 𝒜 is not equivalent to 𝒜 op.

This problem can be fixed, however, by considering the derived category𝒟 = DbCoh(𝑋),
which has many interesting self-dual structures. See §4.2 for details.
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2.2 Self-dual filtrations

2.2.1. We discuss self-dual filtrations in a self-dual exact category 𝒜 . This notion is the or-

thosymplectic analogue of filtrations in linear enumerative geometry, and will play a crucial

role in orthosymplectic enumerative geometry.

For example, the orthosymplectic version of Harder–Narasimhan filtrations, mentioned in

§1.3.4, will be such self-dual filtrations.

2.2.2. Exact categories. For the purpose of describing filtrations later on, we briefly discuss

the notion of exact categories, originally introduced by Quillen [133]. We present the following

definition taken from Keller [90, Appendix A]:

An exact category is an additive category 𝒜 equipped with a distinguished class of se-

quences

𝑦 𝑥 𝑧𝑖 𝑝 (2.2.2.1)

of morphisms in 𝒜 , called short exact sequences, satisfying the following conditions:

We call morphisms that appear as the first (resp. second) arrow in a short exact sequence

an inclusion (resp. a projection). Then,

(i) Sequences of the form 𝐸 ↪ 𝐸 ⊕ 𝐹 ↠ 𝐹 , called split exact sequences, are short exact,

where the two arrows are the canonical ones.

(ii) All short exact sequences are kernel–cokernel pairs, that is, in (2.2.2.1), we always have

𝑖 = ker(𝑝) and 𝑝 = coker(𝑖).
(iii) Inclusions and projections are closed under composition.

(iv) Pushouts along inclusions exist, and inclusions are closed under pushouts. Dually, pull-

backs along projections exist, and projections are closed under pullbacks.

For example, every abelian category has a canonical structure of an exact category.

A self-dual 𝐾 -linear exact category is a 𝐾 -linear exact category with a self-dual structure,

such that the dual functor (−)∨ sends short exact sequences 𝑦 ↪ 𝑥 ↠ 𝑧 to short exact

sequences 𝑧∨ ↪ 𝑥∨ ↠ 𝑦∨.
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2.2.3. Categories of filtrations. For a 𝐾 -linear exact category 𝒜 and an integer 𝑛 ⩾ 0, define
the 𝐾 -linear exact category 𝒜 (𝑛) of 𝑛-step filtrations in 𝒜 whose objects are diagrams

0 = 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑛 = 𝑥

𝑦1 𝑦2 𝑦𝑛 ,

 









 (2.2.3.1)

with each sequence 𝑥𝑖−1 ↪ 𝑥𝑖 ↠ 𝑦𝑖 short exact in 𝒜 , and morphisms are morphisms of

diagrams. Short exact sequences in 𝒜 (𝑛) are sequences that are term-wise short exact.

2.2.4. Self-dual filtrations. Now, suppose that 𝒜 is a self-dual 𝐾 -linear exact category, and

consider the category 𝒜 (𝑛) defined above.

For an 𝑛-step filtration (2.2.3.1), define its dual filtration to be the 𝑛-step filtration

0 = (𝑥/𝑥𝑛)∨ (𝑥/𝑥𝑛−1)∨ (𝑥/𝑥𝑛−2)∨ ⋯ (𝑥/𝑥0)∨ = 𝑥∨

𝑦∨𝑛 𝑦∨𝑛−1 𝑦∨1 ,

 








 (2.2.4.1)

where 𝑥/𝑥𝑖 denotes the cokernel of the inclusion 𝑥𝑖 ↪ 𝑥 , which exists by the axioms of

an exact category. We have the short exact sequence 𝑦𝑖 ↪ 𝑥/𝑥𝑖−1 ↠ 𝑥/𝑥𝑖 by the third

isomorphism theorem, which holds in any exact category.

This defines a self-dual structure on 𝒜 (𝑛). Its self-dual objects are called 𝑛-step self-dual

filtrations in 𝒜 .

In other words, an 𝑛-step self-dual filtration is a filtration of the form (2.2.3.1), where 𝑥
has a self-dual structure 𝜙 ∶ 𝑥 ∼→ 𝑥∨, such that 𝜙 identifies the filtrations (2.2.3.1) and (2.2.4.1).

In particular, 𝜙 induces isomorphisms 𝑦𝑖 ∼→ 𝑦∨𝑛+1−𝑖 for all 𝑖, and if 𝑛 is odd, then the middle

piece 𝑦(𝑛+1)/2 acquires an induced self-dual structure 𝑦(𝑛+1)/2 ∼→ 𝑦∨
(𝑛+1)/2.

2.3 Stability conditions on exact categories

2.3.1. We define stability conditions on exact categories, generalizing the notion of stability

conditions on abelian categories considered by Rudakov [136] and Joyce [81].

As mentioned in §§1.2.3–1.2.4, the purpose of introducing stability conditions is mainly to

deal with constructing enumerative invariants when the moduli stack is not quasi-compact,

so that a stability condition should produce a stratification of the moduli stack with quasi-
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compact strata, so it is meaningful to count points in each stratum. For example, if the moduli

stack is already quasi-compact, then we can usually use the trivial stability condition, giving

the trivial stratification.

In the case of self-dual exact categories in the sense of §2.2.4, we also definewhen a stability

condition is compatible with the self-dual structure. In this case, we can also say when a self-

dual object is semistable or stable.

These notions of stability will not be essentially used in our main constructions, but will

serve as a motivation for the more complicated definition of stability conditions for linear

stacks in §3.5 below, and will be easier to work with when studying examples.

We prove two useful results, Theorems 2.3.4 and 2.3.5, which characterize semistability

and stability for self-dual objects in self-dual exact categories.

2.3.2. Stability for exact categories. We first define a notion of stability conditions for exact

categories, following ideas of Rudakov [136], Joyce [81], and Bridgeland [22].

Let 𝒜 be a 𝐾 -linear exact category (see §2.2.2), which we assume to be essentially small.

The Grothendieck group of 𝒜 is the abelian group 𝐾0(𝒜) generated by isomorphism classes

of objects of 𝒜 , modulo the relations [𝑥] ∼ [𝑦] + [𝑧] for short exact sequences 𝑦 ↪ 𝑥 ↠ 𝑧
in𝒜 . We assume that [𝑥] = 0 in𝐾0(𝒜) implies 𝑥 ≃ 0. Let 𝐶(𝒜) ⊂ 𝐾0(𝒜) be the submonoid

consisting of classes of objects in 𝒜 .

A weak stability condition on 𝒜 is a map of sets

𝜏 ∶ 𝐶(𝒜) ∖ {0} ⟶ 𝑇 ,

where 𝑇 is a totally ordered set, satisfying the following conditions: We say that

• An object 𝑥 ∈ 𝒜 is 𝜏 -semistable, if for any short exact sequence 𝑦 ↪ 𝑥 ↠ 𝑧 in 𝒜 with

𝑦, 𝑧 ≠ 0, we have 𝜏(𝑦) ⩽ 𝜏(𝑥) ⩽ 𝜏(𝑧).
• An object 𝑥 ∈ 𝒜 is 𝜏 -stable, if it is non-zero, and for any short exact sequence 𝑦 ↪ 𝑥 ↠
𝑧 in 𝒜 with 𝑦, 𝑧 ≠ 0, we have 𝜏(𝑦) < 𝜏(𝑥) < 𝜏(𝑧).

Then, we require the following:

(i) For any short exact sequence 𝑦 ↪ 𝑥 ↠ 𝑧 of non-zero objects in 𝒜 , we have either

𝜏(𝑦) ⩽ 𝜏(𝑥) ⩽ 𝜏(𝑧) or 𝜏(𝑦) ⩾ 𝜏(𝑥) ⩾ 𝜏(𝑧).
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(ii) For any non-zero 𝜏 -semistable objects 𝑥, 𝑦 ∈ 𝒜 , if 𝜏(𝑥) > 𝜏(𝑦), then 𝒜(𝑥, 𝑦) = 0.
(iii) Every object 𝑥 ∈ 𝒜 has a Harder–Narasimhan filtration, that is a filtration

0 = 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑘 = 𝑥

𝑦1 𝑦2 𝑦𝑘 ,

 










with each 𝑥𝑖−1 ↪ 𝑥𝑖 ↠ 𝑦𝑖 short exact, and each 𝑦𝑖 non-zero and 𝜏 -semistable, such that

𝜏(𝑦1) > 𝜏(𝑦2) > ⋯ > 𝜏(𝑦𝑘).

Here, the conditions (ii)–(iii) are automatic when 𝒜 is an abelian category and is noetherian

and 𝜏 -artinian in the sense of Joyce [81, §4]; see there for more details.

In (iii), the Harder–Narasimhan filtration of every object is unique up to a unique iso-

morphism, which can be deduced from a standard argument.

We say that 𝜏 is a stability condition, if in addition, we have the following:

(iv) For any 𝑡 ∈ 𝑇 , the full subcategory𝒜(𝑡) ⊂ 𝒜 consisting of 𝜏 -semistable objects 𝑥 with

either 𝜏(𝑥) = 𝑡 or 𝑥 = 0, with the induced exact structure, is an abelian category, and

is closed under taking kernels and cokernels in 𝒜 .

In this case, for any short exact sequence 𝑦 ↪ 𝑥 ↠ 𝑧 of non-zero objects in𝒜 , we have either

𝜏(𝑦) < 𝜏(𝑥) < 𝜏(𝑧), or 𝜏(𝑦) = 𝜏(𝑥) = 𝜏(𝑧), or 𝜏(𝑦) > 𝜏(𝑥) > 𝜏(𝑧). This condition is

equivalent to (iv) when 𝒜 itself is an abelian category.

2.3.3. Self-dual stability. Let𝒜 be a small self-dual𝐾 -linear exact category, where the duality

preserves the exact structure as in §2.2.4, and also the linear structure.

We say that a weak stability condition 𝜏 on 𝒜 is self-dual, if the following condition is

satisfied:

• For any non-zero objects 𝑥, 𝑦 ∈ 𝒜 , we have 𝜏(𝑥) ⩽ 𝜏(𝑦) if and only if 𝜏(𝑦∨) ⩽ 𝜏(𝑥∨).

In this case, shrinking 𝑇 if necessary, we may assume that there is an order-reversing involu-

tion on 𝑇 , denoted by 𝑡 ↦ −𝑡 , with a unique fixed element 0 ∈ 𝑇 . In particular, if (𝑥, 𝜙) ∈ 𝒜 sd

is a non-zero self-dual object, then 𝜏(𝑥) = 0.
For a self-dual object (𝑥, 𝜙) ∈ 𝒜 sd, we introduce the following notions:

• A subobject 𝑦 ↪ 𝑥 is isotropic, if the composition 𝑦 ↪ 𝑥 𝜙→ 𝑥∨ ↠ 𝑦∨ is zero.
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• We say that (𝑥, 𝜙) is 𝜏 -semistable, if for any non-zero isotropic subobject 𝑦 ↪ 𝑥 , we
have 𝜏(𝑦) ⩽ 0.

• We say that (𝑥, 𝜙) is 𝜏 -stable, if for any non-zero isotropic subobject 𝑦 ↪ 𝑥 that is not

an isomorphism, we have 𝜏(𝑦) < 0. We allow 𝑥 to be zero here.

Note that giving an isotropic subobject 𝑦 ↪ 𝑥 is equivalent to giving a three-term self-dual

filtration whose total object is (𝑥, 𝜙), in the sense of §2.2.4, which is necessarily of the form

0 𝑦 𝑦⟂ 𝑥

𝑦 𝑧 𝑦∨ ,

 





  (2.3.3.1)

where 𝑦⟂ = (𝑥/𝑦)∨, 𝑧 = 𝑦⟂/𝑦 , and 𝑦∨ ≃ 𝑥/𝑦⟂. The object 𝑧 has an induced self-dual

structure, giving an object (𝑧, 𝜓) ∈ 𝒜 sd.

From this, one can deduce the following characterizations of semistability and stability for

self-dual objects.

2.3.4. Theorem. Let 𝒜 be a self-dual 𝐾 -linear exact category, and let 𝜏 be a self-dual weak

stability condition on𝒜 . Then an object (𝑥, 𝜙) ∈ 𝒜 sd is 𝜏 -semistable if and only if its underlying

object 𝑥 ∈ 𝒜 is 𝜏 -semistable.

Proof. Consider the Harder–Narasimhan filtration of 𝑥 . Its dual filtration in the sense of

§2.2.4 is a Harder–Narasimhan filtration of 𝑥∨, and the self-dual structure on 𝑥 equips this

filtration with the structure of a self-dual filtration. Therefore, if this filtration has at least two

terms, then the first term must be isotropic, proving that (𝑥, 𝜙) being semistable implies 𝑥
being semistable. The other direction is clear.

2.3.5. Theorem. Let𝒜 be a noetherian self-dual𝐾 -linear exact category, and let 𝜏 be a self-dual
stability condition on 𝒜 . Then an object (𝑥, 𝜙) ∈ 𝒜 sd is 𝜏 -stable if and only if it is of the form

(𝑥, 𝜙) ≃ (𝑥1, 𝜙1) ⊕⋯⊕ (𝑥𝑛, 𝜙𝑛) ,

where 𝑛 ⩾ 0, (𝑥𝑖, 𝜙𝑖) ∈ 𝒜 sd, and the underlying objects 𝑥𝑖 ∈ 𝒜 are 𝜏 -stable.
In particular, if −1 has a square root in 𝐾 , then the objects (𝑥𝑖, 𝜙𝑖) are pairwise non-

isomorphic, and Aut(𝐸, 𝜙) ≃ ℤ𝑛2 .

Proof. The abelian category 𝒜(0) ⊂ 𝒜 in §2.3.2 (iv) is noetherian and self-dual, so it is also
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artinian. Let (𝑥, 𝜙) ∈ 𝒜 sd be stable, so 𝑥 ∈ 𝒜(0). Let

0 = 𝑥0 ↪⟶ 𝑥1 ↪⟶ ⋯ ↪⟶ 𝑥𝑛 = 𝑥 (2.3.5.1)

be a Jordan–Hölder filtration of 𝑥 in 𝒜(0), where the stepwise quotients are simple. If 𝑛 ⩽ 1,
then we are done. Suppose that 𝑛 > 1. Since (𝑥, 𝜙) is stable, the inclusion 𝑥1 ↪ 𝑥 cannot

be isotropic, so it does not factor through 𝑥⟂1 ≃ (𝑥/𝑥1)∨. The composition 𝑥1 ↪ 𝑥 ↠
𝑥/𝑥⟂1 ≃ 𝑥∨1 is thus non-zero, and hence an isomorphism. This induces a splitting (𝑥, 𝜙) ≃
(𝑥1, 𝜙|𝑥1)⊕(𝑥⟂1 , 𝜙|𝑥⟂1 ) into a sum of stable self-dual objects. Repeating this process, we obtain

the desired decomposition, where the artinian property ensures that the process terminates.

For the last statement, suppose we have an isomorphism 𝜓 ∶ (𝑥𝑖, 𝜙𝑖) ≃ (𝑥𝑗 , 𝜙𝑗) for some

𝑖 ≠ 𝑗. Then id𝑥𝑖 + √−1 ⋅ 𝜓 ∶ 𝑥𝑖 ↪ 𝑥 is an isotropic subobject of 𝑥 , a contradiction.

2.4 Bridgeland stability conditions

2.4.1. We now introduce Bridgeland stability conditions following Bridgeland [22], which are a

notion of stability defined on triangulated categories, whichwewill apply to derived categories

of coherent sheaves on varieties. Later on, we will also study enumerative invariants counting

semistable objects for such stability conditions.

Another reason why we are interested in Bridgeland stability conditions is that we need

them to obtain self-dual categories of sheaves on smooth projective varieties, as discussed in

§2.1.6, so that our theory of orthosymplectic enumerative invariants can be applied.

In the following, we work with triangulated categories in the sense of, for example, Gelfand

and Manin [61, Chapter IV].

2.4.2. Bridgeland stability conditions. Assume that we are given the following data:

• A 𝐾 -linear triangulated category 𝒞 .

• A finitely generated free abelian group Γ, with a surjective homomorphism 𝐾(𝒞) ↠ Γ
from the Grothendieck group of 𝒞 .

Then a Bridgeland stability condition on 𝒞 that factors through Γ is a pair 𝜏 = (𝑍, 𝒫 ), where

• 𝑍 ∶ Γ → ℂ is a group homomorphism.
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• 𝒫 is a slicing on 𝒞 , meaning a family of 𝐾 -linear full subcategories (𝒫 (𝑡) ⊂ 𝒞)𝑡∈ℝ,
such that the following conditions hold:

(i) We have 𝒫 (𝑡 + 1) = 𝒫 (𝑡)[1] for all 𝑡 ∈ ℝ.

(ii) If 𝑡1 > 𝑡2, then for any 𝑥1 ∈ 𝒫 (𝑡1) and 𝑥2 ∈ 𝒫 (𝑡2), we have 𝒞(𝑥1, 𝑥2) = 0.
(iii) Each object 𝑥 ∈ 𝒞 has a Harder–Narasimhan filtration, that is a sequence

0 = 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑘 = 𝑥

𝑦1 𝑦2 𝑦𝑘 ,

 








 (2.4.2.1)

where each 𝑥𝑖−1 → 𝑥𝑖 → 𝑦𝑖 is an exact triangle, we have 0 ≄ 𝑦𝑖 ∈ 𝒫 (𝑡𝑖) for some

𝑡𝑖 ∈ ℝ, and we have 𝑡1 > ⋯ > 𝑡𝑘 .

They should satisfy the following condition:

• For any 𝑡 ∈ ℝ and any 0 ≄ 𝑥 ∈ 𝒫 (𝑡), we have

𝑍(𝑥) ∈ ℝ>0 ⋅ eiπ𝑡 , (2.4.2.2)

where 𝑍(𝑥) denotes the value of 𝑍 on the image of 𝑥 in Γ.

Here, 𝒫 (𝑡) is called the subcategory of semistable objects of phase 𝑡 , and is necessarily a 𝐾 -

linear abelian category.

For any interval 𝐼 ⊂ ℝ, denote by 𝒫 (𝐼) ⊂ 𝒞 the smallest extension-closed subcategory

of 𝒞 containing all the subcategories 𝒫 (𝑡) for 𝑡 ∈ 𝐼 , where being extension-closed means that

for any exact triangle 𝑥 → 𝑦 → 𝑧 in 𝒞 with 𝑥, 𝑧 ∈ 𝒫 (𝐼), we also have 𝑦 ∈ 𝒫 (𝐼).
For any object 0 ≄ 𝑥 ∈ 𝒞 , one can show that its Harder–Narasimhan filtration is unique

up to a unique isomorphism. If its Harder–Narasimhan factors are 𝑦1, … , 𝑦𝑘 as above, then

we define

𝜙+(𝑥) = 𝑡1 , 𝜙−(𝑥) = 𝑡𝑘 , 𝑚(𝑥) =
𝑘
∑
𝑖=1

|𝑍(𝑦𝑖)| . (2.4.2.3)

These are called the maximal phase, the minimal phase, and the mass of 𝑥 .
We denote by StabΓ(𝒞 ) the set of such Bridgeland stability conditions.

2.4.3. The space of stability conditions. The set StabΓ(𝒞) has a topology given by a general-
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ized metric 𝑑 , that is, a metric allowing infinite distance, defined as in [22, §8] by

𝑑(𝜏 , 𝜏̃ ) = sup { |𝜙+(𝑥) − 𝜙̃+(𝑥)|, |𝜙−(𝑥) − 𝜙̃−(𝑥)|, |log𝑚(𝑥) − log 𝑚̃(𝑥)| | 𝑥 ≠ 0 } , (2.4.3.1)

where 𝑥 goes through all non-zero objects of 𝒞 . The projection

StabΓ(𝒞) ⟶ Hom(Γ, ℂ) (2.4.3.2)

given by (𝑍 , 𝒫 ) ↦ 𝑍 is a local homeomorphism, and equips StabΓ(𝒞) with the structure of

a complex manifold.

2.4.4. Self-dual Bridgeland stability conditions. We now discuss self-dual Bridgeland stabil-

ity conditions in self-dual triangulated categories. This type of duality already appeared, for

example, in Bayer [8, §3.3] and Bayer, Macrì, and Toda [9, Lemma 4.1.2 ff.], although for dif-

ferent purposes.

Let𝒞 be a self-dual𝐾 -linear triangulated category, that is a𝐾 -linear triangulated category

with a self-dual structure in the sense of §2.1.2, such that the dual functor (−)∨ exchanges

shifting by 1 and−1, and sends exact triangles 𝑥 → 𝑦 → 𝑧 → 𝑥[1] to exact triangles 𝑥∨[−1] →
𝑧∨ → 𝑦∨ → 𝑥∨.

Let 𝐾(𝒞) → Γ be a map as in §2.4.2, such that its kernel is preserved by the dual func-

tor (−)∨. In this case, the group Γ has an induced involution (−)∨ ∶ Γ ∼→ Γ, whose fixed locus

is denoted by Γsd.
For a Bridgeland stability condition 𝜏 = (𝑍, 𝒫 ) ∈ StabΓ(𝒞), define its dual stability con-

dition 𝜏∨ = (𝑍∨, 𝒫 ∨) by setting

𝑍∨(𝛼) = 𝑍(𝛼∨) , 𝒫 ∨(𝑡) = 𝒫 (−𝑡)∨ (2.4.4.1)

for all 𝛼 ∈ Γ and 𝑡 ∈ ℝ, where (−) denotes complex conjugation.

If 𝜏 = 𝜏∨, then it is called a self-dual Bridgeland stability condition.

Taking the dual stability condition defines an anti-holomorphic involution

(−)∨ ∶ StabΓ(𝒞) ∼⟶ StabΓ(𝒞 ) , (2.4.4.2)

and its fixed locus StabsdΓ (𝒞 ) ⊂ StabΓ(𝒞 ) is the space of self-dual stability conditions, which

is a real analytic manifold.
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2.4.5. Self-dual dg-categories. Finally, we remark that from a higher categorical point of

view, the above notion of self-dual structures on triangulated categories might not be the

most natural one, and we sometimes also need to impose higher coherence conditions.

For this purpose, we can choose toworkwith𝐾 -linear dg-categories, or categories enriched

in chain complexes of 𝐾 -modules, with a notion of equivalence of dg-categories as described

in Keller [91, §7.2] or Haugseng [70, Definition 5.6]. All derived categories we are interested in

are𝐾 -linear dg-categories. By Lurie [106, §1.3.1], a𝐾 -linear dg-category𝒞 has an underlying

∞-category 𝒞0 obtained by applying the Dold–Kan functor. Moreover, all (small) 𝐾 -linear dg-

categories form an ∞-category as in Tabuada [141] and Toën [150].

We may now define self-dual 𝐾 -linear dg-categories, and self-dual objects in them, as

fixed points of suitable ℤ2-actions in the corresponding ∞-categories. Note that in this case,

the explicit axioms in §2.1.2 will not be enough, and more coherence data is required.
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Chapter 3

Moduli stacks

In this chapter, we discuss moduli stacks of objects in linear categories, and moduli stacks of

self-dual objects in self-dual linear categories, which are algebraic stacks whose points corres-

pond to objects in these categories, and whose stabilizer groups correspond to automorphism

groups of these objects.

We will take an intrinsic approach, meaning that we solely work with algebraic stacks that

behave like such moduli stacks, without referring to the original categories. Such stacks are

called linear stacks as in the author et al. [30, §7.1], and we also discuss self-dual structures on

linear stacks, fromwhich one can construct themoduli stack of self-dual objects. See Chapter 4

for concrete examples.

3.1 Algebraic spaces and stacks

3.1.1. This section provides background material on algebraic spaces and algebraic stacks,

mainly following Olsson [119].

We do not attempt to give a complete introduction to the theory here, and some standard

notions will not be rigorously defined here. The reader should refer to standard textbooks

such as Olsson [119] or the Stacks project [139] for more details.

3.1.2. Algebraic spaces. We first give a definition of algebraic spaces. See Olsson [119, §5.1],

Knutson [95, II.1], or Laumon and Moret-Bailly [100, §1] for more details.

Let Aff be the category of affine schemes, equipped with the étale topology (see [119,
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Example 2.1.13]). An algebraic space is a functor

𝑋 ∶ Affop ⟶ Set ,

satisfying the following properties:

(i) 𝑋 is a sheaf with respect to the étale topology on Aff .

(ii) There exists a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋 that is representable

by schemes.

Here, the property (ii) means more precisely that for any affine scheme 𝑇 and any morphism

𝑇 → 𝑋 , the base change 𝑈𝑇 = 𝑈 ×𝑋 𝑇 → 𝑇 is a surjective étale morphism of schemes, where

we identify a scheme with the functor Affop → Set that it represents.

Note that some sources, such as Knutson [95] or Laumon and Moret-Bailly [100], impose

the extra condition that 𝑋 is quasi-separated, meaning that the diagonal morphism Δ𝑋 ∶ 𝑋 →
𝑋 ×𝑋 is quasi-compact. More modern sources such as Olsson [119] or the Stacks project [139]

tend to omit this condition, and say quasi-separated algebraic spaces instead, and we follow

this latter approach.

3.1.3. Algebraic stacks. We now give a definition of algebraic stacks, also called Artin stacks.

Standard references on algebraic stacks include Olsson [119], the Stacks project [139], and

Laumon and Moret-Bailly [100].

Let Grpd be the 2-category of small groupoids. An algebraic stack is a functor

𝒳 ∶ Affop ⟶ Grpd ,

satisfying the following properties:

(i) 𝒳 is a sheaf with respect to the étale topology on Aff .

(ii) There exists a scheme𝑈 and a surjective smoothmorphism𝑈 → 𝒳 that is representable

by algebraic spaces.

Here, the property (i) involves a 2-categorical notion of sheaves; see, for example, Olsson [119,

§4.6]. The property (ii) means that for any affine scheme 𝑇 and any morphism 𝑇 → 𝒳 , the

base change 𝑈𝑇 = 𝑈 ×𝒳 𝑇 → 𝑇 is a surjective smooth morphism of algebraic spaces.
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We denote by St ⊂ Fun(Affop,Grpd) the full sub-2-category of algebraic stacks.

Again, some sources such as [100] impose the extra condition that 𝒳 is quasi-separated

(and/or has separated diagonal), meaning that the diagonal morphism Δ𝒳 ∶ 𝒳 → 𝒳 × 𝒳 is

quasi-compact and quasi-separated (and/or separated). We follow more modern sources, such

as [119] or [139], which omit these conditions.

An algebraic stack 𝒳 is called a Deligne–Mumford stack if it satisfies the following extra

property:

(ii′) There exists a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝒳 that is representable

by algebraic spaces.

Roughly, this condition means that the stabilizer groups of 𝒳 , as in §3.1.5 below, must be

discrete groups.

Many properties of morphisms of schemes generalize to stacks, such as being an open (or

closed, or locally closed) immersion, being quasi-compact, (quasi-)separated, (locally) of finite

type, proper, affine, étale, smooth, etc. We do not list the definitions here, but we refer to Olsson

[119] for details. In particular, an open (or closed, or locally closed) substack of 𝒳 means an

algebraic stack with an open (or closed, or locally closed) immersion to 𝒳 .

Another useful class of morphisms of stacks is those representable by algebraic spaces, or

representable morphisms for short, meaning morphisms 𝒴 → 𝒳 such that for any algebraic

space 𝑇 and any morphism 𝑇 → 𝒳 , the base change 𝒴𝑇 = 𝒴 ×𝒳 𝑇 is an algebraic space.

3.1.4. The underlying topological space. Each algebraic stack𝒳 has an underlying topological

space |𝒳 |, as in Laumon andMoret-Bailly [100, §5], similar to the underlying topological space

of a scheme equipped with the Zariski topology.

Namely, a point 𝑥 ∈ 𝒳 is an equivalence class of morphisms Spec𝐾 → 𝒳 for fields 𝐾 ,

with the equivalence relation generated by the relation that two such morphisms are equival-

ent if one factors through the other. The set |𝒳 | of points of 𝒳 admits a natural topology,

called the Zariski topology, where the open sets are the sets |𝒰| ⊂ |𝒳 | for open immersions

𝒰 → 𝒳 . The space |𝒳 | is called the underlying topological space of 𝒳 .

As with the case of schemes, open substacks of 𝒳 are in bijection with open sets in |𝒳 |,
whereas different closed substacks of |𝒳 | can correspond to the same closed set in |𝒳 |. Nev-
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ertheless, each closed set gives a canonical reduced induced closed substack.

We will frequently use the set of connected components of𝒳 , denoted by π0(𝒳) = π0(|𝒳 |).
Each element 𝛼 ∈ π0(𝒳) gives an open and closed substack 𝒳𝛼 ⊂ 𝒳 .

3.1.5. Stabilizer groups. For an algebraic stack 𝒳 and a point 𝑥 ∶ Spec𝐾 → 𝒳 , the stabilizer

group of 𝑥 is a group algebraic space over 𝐾 given by the fibre product

Aut(𝑥) = Spec𝐾 ×𝑥,𝒳 ,𝑥 Spec𝐾 .

Its group of 𝐾 -points is the automorphism group of 𝑥 as an object in the groupoid 𝒳(𝐾).
All the stabilizer groups of points in 𝒳 arrange themselves into a group stack over 𝒳 ,

given by

ℐ𝒳 = 𝒳 ×𝒳×𝒳 𝒳 ,

called the inertia stack or the loop stack of 𝒳 . The natural morphism ℐ𝒳 → 𝒳 , given by

projection to either factor, has the stabilizer groups Aut(𝑥) as its fibres.

3.1.6. Quotient stacks. Quotient stacks are an important class of motivating examples and one

of the most common sources of algebraic stacks.

For an algebraic space 𝑋 defined over a base algebraic space 𝑆, and a group algebraic

space 𝐺 over 𝑆 acting on 𝑋 , there is the quotient stack 𝑋/𝐺 as an algebraic stack over 𝑆. See
Olsson [119, Example 8.1.12] for details.

3.1.7. Mapping stacks. We will make extensive use ofmapping stacks, or stacks that paramet-

rize morphisms between two given algebraic stacks.

For algebraic stacks 𝒳 and𝒴 defined over a base algebraic stack 𝒮 , define the functor

ℳap𝒮 (𝒳,𝒴)∶ Aff/𝒮 ⟶ Grpd ,
𝑇 ⟼ St/𝒮 (𝒳 ×𝒮 𝑇 ,𝒴) ,

where Aff/𝒮 is the category of affine schemes with a morphism to 𝒮 . If this functor is repres-

ented by an object of St/𝒮 , this object is called the mapping stack from 𝒳 to 𝒴 , also denoted

by ℳap𝒮 (𝒳 ,𝒴). We often omit the base 𝒮 from the notation when it is clear from context.
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3.2 Graded and filtered points

3.2.1. We introduce the stacks of graded and filtered points of an algebraic stack, following

Halpern-Leistner [65], as we mentioned in §1.3.7. We will later use this formalism to define

linear stacks and self-dual linear stacks, which will be the main basic setting of this thesis.

3.2.2. Running assumptions. In the following, we work over a field 𝐾 , and we work with

algebraic stacks 𝒳 over 𝐾 with the following properties:

(i) 𝒳 is locally of finite type over 𝐾 , meaning that there exists a scheme 𝑈 locally of finite

type over 𝐾 and a surjective smooth morphism 𝑈 → 𝒳 .

(ii) 𝒳 has affine diagonal, meaning that the diagonal morphism Δ𝒳 ∶ 𝒳 → 𝒳 × 𝒳 is an

affine morphism, in that it is so upon a base change to any scheme.

The condition (ii) has the following consequences:

• 𝒳 is quasi-separated, meaning that the diagonal morphism Δ𝒳 ∶ 𝒳 → 𝒳 × 𝒳 is quasi-

compact and quasi-separated.

• 𝒳 has affine stabilizers, meaning that for any point 𝑥 ∈ 𝒳 , the stabilizer group Aut(𝑥)
is an affine algebraic group over the residue field 𝜅𝑥 of 𝑥 .

These assumptions are almost always satisfied by the moduli stacks that we are interested in.

3.2.3. Graded and filtered points. Let 𝒳 be a stack over 𝐾 as in §3.2.2. Following Halpern-

Leistner [65], define the stack of graded points and the stack of filtered points of 𝒳 as the

mapping stacks

𝒢rad(𝒳) = ℳap(∗/𝔾m, 𝒳) , (3.2.3.1)

ℱilt(𝒳) = ℳap(𝔸1/𝔾m, 𝒳) , (3.2.3.2)

where 𝔾m acts on 𝔸1 by scaling. By [65, Proposition 1.1.2], these are again algebraic stacks

over 𝐾 , quasi-separated and locally of finite type.

Consider the morphisms

∗/𝔾m 𝔸1/𝔾m ∗ ,0

pr

 1


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where pr is induced by the projection 𝔸1 → ∗. These induce morphisms of stacks

𝒢rad(𝒳) ℱilt(𝒳) 𝒳 ,


tot

sf

 gr ev

where the notations ‘gr’, ‘sf’, ‘ev’, and ‘tot’ stand for the associated graded point, the split filtra-

tion, the evaluation, and the total point, respectively.

By [65, Lemma 1.1.5 and Proposition 1.1.13], the morphisms tot and ev are representable

by algebraic spaces, under our assumptions in §3.2.2. Moreover, by [65, Lemma 1.3.8], the

morphism gr is an 𝔸1-deformation retract, and hence induces a bijection π0(𝒢rad(𝒳)) ∼→
π0(ℱilt(𝒳)).

3.2.4. Example. Quotient stacks. The stacks of graded and filtered points of a quotient stack

can be described explicitly, following Halpern-Leistner [65, Theorems 1.4.7 and 1.4.8].

Let 𝒳 = 𝑈/𝐺 be a quotient stack, where 𝑈 is a quasi-separated algebraic space over 𝐾 ,

locally of finite type, acted on by a smooth affine algebraic group𝐺 over𝐾 with a split maximal

torus 𝑇 ⊂ 𝐺.

For a cocharacter 𝜆 ∶ 𝔾m → 𝐺, define the Levi subgroup and the parabolic subgroup of 𝐺
associated to 𝜆 by

𝐿𝜆 = {𝑔 ∈ 𝐺 ∣ 𝑔 = 𝜆(𝑡) 𝑔 𝜆(𝑡)−1 for all 𝑡} ,
𝑃𝜆 = {𝑔 ∈ 𝐺 ∣ lim𝑡→0𝜆(𝑡) 𝑔 𝜆(𝑡)−1 exists} ,

respectively. For example, if 𝐺 = GL(𝑛) and 𝜆(𝑡) = diag(𝑡𝑘1 , … , 𝑡𝑘𝑛)with 𝑘1 ⩾ ⋯ ⩾ 𝑘𝑛, then
𝐿𝜆, 𝑃𝜆 ⊂ 𝐺 are the groups of block diagonal and block upper triangular matrices, respectively,

where the 𝑖-th and 𝑗-th positions belong to the same block if and only if 𝑘𝑖 = 𝑘𝑗 .
Define the fixed locus and the attractor associated to 𝜆 by

𝑈 𝜆 = Map𝔾m(∗, 𝑈 ) ,
𝑈 𝜆,+ = Map𝔾m(𝔸1, 𝑈 ) ,

where Map𝔾m(−, −) denotes the𝔾m-equivariant mapping space, and𝔾m acts on 𝑈 via 𝜆, and
on 𝔸1 by scaling. These are again algebraic spaces over 𝐾 , as in Drinfeld and Gaitsgory [54,

§1]. For example, if 𝑈 is a 𝐺-representation, then 𝑈 𝜆, 𝑈 𝜆,+ ⊂ 𝑈 are the subspaces with zero
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and non-negative 𝜆-weights, respectively.
By [65, Theorems 1.4.7 and 1.4.8], we have

𝒢rad(𝒳) ≃ ∐
𝜆 ∶ 𝔾m→𝐺

𝑈 𝜆/𝐿𝜆 , (3.2.4.1)

ℱilt(𝒳) ≃ ∐
𝜆 ∶ 𝔾m→𝐺

𝑈 𝜆,+/𝑃𝜆 , (3.2.4.2)

where the coproducts are taken over conjugacy classes of cocharacters 𝜆, and the 𝐿𝜆-action

on 𝑈 𝜆 and the 𝑃𝜆-action on 𝑈 𝜆,+ are induced by the 𝐺-action on 𝑈 .

3.3 Linear stacks

3.3.1. We introduce the notion of linear stacks, also called linear moduli stacks, as in the author

et al. [30, §7.1]. They are algebraic stacks that behave like moduli stacks of objects in linear

categories. The reader is recommended to refer to Chapter 4 for concrete examples of such

stacks.

This thesis takes an intrinsic approach to moduli stacks, meaning that we base all our

constructions on the structure of linear stacks, without referring to the original categories of

objects that these stacks are supposed to parametrize.

3.3.2. Linear stacks. Let 𝐾 be a field. As in the author et al. [30, §7.1], define a linear stack

over 𝐾 to be the following data:

• An algebraic stack 𝒳 over 𝐾 .

• A commutative monoid structure ⊕∶ 𝒳 × 𝒳 → 𝒳 , with unit 0 ∈ 𝒳(𝐾).
• A ∗/𝔾m-action ⊙∶ ∗/𝔾m × 𝒳 → 𝒳 respecting the monoid structure.

Note that these structures come with extra coherence data.

In this case, the set π0(𝒳) of connected components of 𝒳 carries the structure of a com-

mutative monoid. We denote its operation by +, and its unit by 0.
We require the following additional property:

• There is an isomorphism

∐
𝛾 ∶ ℤ→π0(𝒳)

∏
𝑛∈supp(𝛾)

𝒳𝛾(𝑛) ∼⟶ 𝒢rad(𝒳) , (3.3.2.1)
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where 𝛾 runs through maps of sets ℤ → π0(𝒳) such that supp(𝛾) = ℤ∖𝛾−1(0) is finite,
and the morphism is defined by the composition

∗/𝔾m × ∏
𝑛∈supp(𝛾)

𝒳𝛾(𝑛)
(−)𝑛⟶ ∏

𝑛∈supp(𝛾)
(∗/𝔾m × 𝒳𝛾(𝑛))

⊙⟶ ∏
𝑛∈supp(𝛾)

𝒳𝛾(𝑛)
⊕⟶ 𝒳

on the component corresponding to 𝛾 , where the first morphism is given by the 𝑛-th
power map (−)𝑛 ∶ ∗/𝔾m → ∗/𝔾m on the factor corresponding to 𝒳𝛾(𝑛).

We can think of (3.3.2.1) roughly as an isomorphism 𝒢rad(𝒳) ≃ 𝒳ℤ, where we only consider

components of 𝒳ℤ involving finitely many non-zero classes in π0(𝒳).

3.3.3. Example. Vector spaces. Consider the moduli stack of finite-dimensional 𝐾 -vector

spaces, defined as the coproduct

𝒳 = ∐
𝑛∈ℕ

∗/GL(𝑛) . (3.3.3.1)

It is a linear stack over𝐾 , with themonoid structure⊕ given by the direct sum of vector spaces,

and the ∗/𝔾m-action⊙ given by scalar multiplication on vector spaces, or equivalently, given

by the central cocharacters𝔾m → GL(𝑛) defined by 𝑡 ↦ diag(𝑡,… , 𝑡). Here, the isomorphism

(3.3.2.1) follows from the explicit description of 𝒢rad(∗/GL(𝑛)) in Example 3.2.4.

3.3.4. Stacks of filtrations. For a linear stack 𝒳 , recall the canonical isomorphisms

π0(ℱilt(𝒳)) ≃ π0(𝒢rad(𝒳)) ≃ {𝛾 ∶ ℤ → π0(𝒳) ∣ supp(𝛾) finite} ,

where the first isomorphism is induced by themorphism gr, and the second is given by (3.3.2.1).

For classes 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳), there is a stack of filtrations

𝒳+𝛼1,…,𝛼𝑛 ⊂ ℱilt(𝒳) ,

defined as a component corresponding to a map 𝛾 as above whose non-zero values agree with

the non-zero elements in 𝛼𝑛, … , 𝛼1, preserving order. We think of this as the stack paramet-

rizing 𝑛-step filtrations with stepwise quotients of classes 𝛼1, … , 𝛼𝑛. The isomorphism type

of this stack does not depend on the choice of 𝛾 , as in [30, §7.1].
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The morphisms defined in §3.2.3 restrict to canonical morphisms

gr ∶ 𝒳+𝛼1,…,𝛼𝑛 ⟶ 𝒳𝛼1 ×⋯ × 𝒳𝛼𝑛 , (3.3.4.1)

ev ∶ 𝒳+𝛼1,…,𝛼𝑛 ⟶ 𝒳𝛼1+⋯+𝛼𝑛 , (3.3.4.2)

sending a filtration to its associated graded object and total object, respectively. These do not

depend on the choice of 𝛾 .
We say that 𝒳 has quasi-compact filtrations, if for any 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳), the morphism

ev ∶ 𝒳+𝛼1,…,𝛼𝑛 → 𝒳𝛼1+⋯+𝛼𝑛 is quasi-compact. See also Halpern-Leistner [65, Definition 3.8.1].

This is a very mild condition, and is satisfied by all examples of our interest.

3.4 Self-dual linear stacks

3.4.1. Self-dual linear stacks. We now introduce a notion of self-dual linear stacks, which

describe moduli stacks of objects in self-dual linear categories.

Let 𝒳 be a linear stack over 𝐾 . A self-dual structure on 𝒳 is a ℤ2-action on 𝒳 , given by

an involution

(−)∨ ∶ 𝒳 ∼⟶ 𝒳 ,

together with a 2-isomorphism 𝜂∶ (−)∨∨ ∼⇒ id𝒳 with 𝜂(−)∨ = (𝜂∨(−))−1 similarly to §2.1.2, such

that the involution respects the monoid structure ⊕ on 𝒳 , and inverts the ∗/𝔾m-action ⊙,

meaning that it is equivariant with respect to the involution (−)−1 ∶ ∗/𝔾m → ∗/𝔾m. Note

that extra coherence data is needed for these compatibility conditions as well.

In this case, we call 𝒳 a self-dual linear stack. Define the stack of self-dual points of 𝒳 as

the fixed locus

𝒳 sd = 𝒳ℤ2 .

It has affine diagonal by Lemma 3.4.5 below. Note that this is different from the fixed locus of

the automorphism (−)∨ of𝒳 , which would give the fixed locus of the correspondingℤ-action
on 𝒳 , rather than that of the ℤ2-action.
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There is a monoid action

⊕sd ∶ 𝒳 × 𝒳 sd ⟶ 𝒳 sd , (3.4.1.1)

given by (𝑥, 𝑦) ↦ 𝑥 ⊕ 𝑦 ⊕ 𝑥∨. This induces a monoid action π0(𝒳) × π0(𝒳 sd) → π0(𝒳 sd),
which we often denote by (𝛼, 𝜃) ↦ 𝛼 + 𝜃 + 𝛼∨, where 𝛼 + 𝛼∨ can also be seen as a class

in π0(𝒳 sd), corresponding to the case when 𝜃 = 0.

3.4.2. Example. Vector spaces. Consider the linear stack

𝒳 = ∐
𝑛∈ℕ

∗/GL(𝑛)

in Example 3.3.3. Consider the involution (−)∨ ∶ ∗/GL(𝑛) → ∗/GL(𝑛) sending a vector space
to its dual, or equivalently, sending amatrix to its inverse transpose, and choose a sign 𝜀 ∈ {±1}
when identifying (−)∨∨ with id𝒳 , similarly to Example 2.1.4.

Then𝒳 sd is the classifying stack of non-degenerate symmetric (or anti-symmetric) bilinear

forms if 𝜀 = +1 (or −1). In particular, if 𝐾 is algebraically closed of characteristic ≠ 2, then
we have

𝒳 sd =
⎧⎪
⎨⎪
⎩

∐
𝑛∈ℕ

∗/O(𝑛) if 𝜀 = +1,

∐
𝑛∈ℕ

∗/Sp(2𝑛) if 𝜀 = −1.
(3.4.2.1)

3.4.3. Self-dual graded points. The involution on𝒳 induces an involution on 𝒢rad(𝒳), and
we may identify 𝒢rad(𝒳 sd) ≃ 𝒢rad(𝒳)ℤ2 . This gives an isomorphism

𝒢rad(𝒳 sd) ≃ ∐
𝛾 ∶ ℤ∖{0}→π0(𝒳)

involutive,
𝛾(0)∈π0(𝒳 sd)

(𝒳 sd
𝛾(0) × ∏

𝑛>0∶ 𝛾(𝑛)≠0
𝒳𝛾(𝑛)) , (3.4.3.1)

where 𝛾 runs through finitely supported maps that are involutive, meaning that 𝛾(−𝑛) =
𝛾(𝑛)∨ for all 𝑛 > 0, and 𝛾(0) is a convenient notation which is independent of the map 𝛾 , and
𝒳 sd

𝛾(0) ⊂ 𝒳 sd denotes the component corresponding to 𝛾(0).

3.4.4. Self-dual filtrations. For classes 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd), define the stack
of self-dual filtrations

𝒳 sd,+
𝛼1,…,𝛼𝑛 ,𝜃 ⊂ ℱilt(𝒳 sd)
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as a component such that under the isomorphism π0(ℱilt(𝒳 sd)) ≃ π0(𝒢rad(𝒳 sd)), its corres-
ponding map 𝛾 as above has 𝛾(0) = 𝜃 , and its non-zero values at positive integers agree with
the non-zero elements in 𝛼𝑛, … , 𝛼1, preserving order. This does not depend on the choice of 𝛾
by the constancy theorem of the author et al. [30, Theorem 6.1.2].

The stack𝒳 sd,+
𝛼1,…,𝛼𝑛 ,𝜃 can be thought of as parametrizing self-dual filtrations in the sense of

§2.2.4, with stepwise quotients of classes 𝛼1, … , 𝛼𝑛, 𝜃, 𝛼∨𝑛 , … , 𝛼∨1 .

The morphisms defined in §3.2.3 restrict to morphisms gr ∶ 𝒳 sd,+
𝛼1,…,𝛼𝑛 ,𝜃 → 𝒳𝛼1 ×⋯×𝒳𝛼𝑛 ×

𝒳 sd
𝜃 and ev ∶ 𝒳 sd,+

𝛼1,…,𝛼𝑛 ,𝜃 → 𝒳 sd
𝛼1+⋯+𝛼𝑛+𝜃+𝛼∨𝑛 +⋯+𝛼∨1 . If 𝒳 has quasi-compact filtrations as in

§3.3.4, then the morphism ev described above is always quasi-compact.

3.4.5. Lemma. Let 𝒳 be a stack as in §3.2.2, acted on by ℤ2. Then the forgetful morphism

𝒳ℤ2 → 𝒳 is affine.

Proof. Let 𝒥 = 𝒳 ×𝑗0, 𝒳×𝒳, 𝑗1 𝒳 , where 𝑗0 is the diagonal morphism, and 𝑗1 = (id, 𝑖), where 𝑖
is the involution. Let 𝜋 ∶ 𝒥 → 𝒳 be the projection to the first factor, which is affine as 𝒳 has

affine diagonal. Let ℤ2 act on 𝒥 by the involution on the second factor, so we may identify

𝒥 ℤ2 ≃ 𝒳ℤ2 . Then 𝜋 is equivariant with respect to the trivial ℤ2-action on 𝒳 , so the forget-

ful morphism 𝒥 ℤ2 → 𝒥 is a closed immersion, which can be seen by base changing along

morphisms from affine schemes to 𝒳 . The composition 𝒳ℤ2 ≃ 𝒥 ℤ2 → 𝒥 → 𝒳 is thus

affine.

3.5 Stability conditions on linear stacks

3.5.1. We define a notion of stability conditions on linear stacks, based on the notion of Θ-
stratifications of a stack developed by Halpern-Leistner [65]. Such stratifications is a geomet-

ric formulation of the existence and uniqueness of Harder–Narasimhan filtrations in various

moduli problems, as we discussed in §1.2.4.

The theory ofΘ-stratifications has seen important applications, including the construction

of good moduli spaces for algebraic stacks in Alper, Halpern-Leistner, and Heinloth [5].

Our notion of stability is a geometric version of the notion of stability conditions on cat-

egories introduced in §2.3. In particular, such a stability condition will determine a semistable
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locus in the moduli stack, which will be used to construct enumerative invariants.

3.5.2. Stratifications. For an algebraic stack 𝒳 , we define a stratification of 𝒳 as a family of

locally closed substacks (𝒳𝑖)𝑖∈𝐼 of 𝒳 , satisfying the following properties:

(i) The subspaces |𝒳𝑖| ⊂ |𝒳 | give a partition of the underlying set |𝒳 |, meaning that they

are disjoint and that their union is |𝒳 |.
(ii) There exists a total order ⩽ on 𝐼 , such that for any 𝑖 ∈ 𝐼 , the set ⋃𝑖′⩽𝑖 |𝒳𝑖′ | ⊂ |𝒳 | is

open.

(iii) Local finiteness. For any quasi-compact open substack 𝒰 ⊂ 𝒳 , there are only finitely

many 𝑖 ∈ 𝐼 such that |𝒰| ∩ |𝒳𝑖| ≠ ∅.

Note that these conditions depend entirely on the topological subspaces |𝒳𝑖| ⊂ |𝒳 |. In this

case, each 𝒳𝑖 is called a stratum of the stratification.

3.5.3. Θ-stratifications. We now defineΘ-stratifications following Halpern-Leistner [65], but
we slightly weaken the original definition by discarding the ordering on the set of strata.

Let 𝒳 be a stack as in §3.2.2. A Θ-stratification of 𝒳 is the following data:

• Open substacks 𝒮 ⊂ ℱilt(𝒳) and 𝒵 ⊂ 𝒢rad(𝒳), with 𝒮 = gr−1(𝒵),

such that for each 𝜆 ∈ π0(𝒢rad(𝒳)) ≃ π0(ℱilt(𝒳)), if we write 𝒮𝜆 ⊂ 𝒮 and 𝒵𝜆 ⊂ 𝒵 for

the parts lying in the components 𝒳+
𝜆 ⊂ ℱilt(𝒳) and 𝒳𝜆 ⊂ 𝒢rad(𝒳), respectively, then:

• For each 𝜆, the morphism ev ∶ 𝒮𝜆 → 𝒳 is a locally closed immersion, and the family

(𝒮𝜆)𝜆 defines a stratification of 𝒳 .

In this case, each𝒵𝜆 is called the centre of the stratum 𝒮𝜆.

3.5.4. Stability for linear stacks. Let𝒳 be a linear stack, as in §3.3.2. Define a stability condi-

tion on 𝒳 to be a map

𝜏 ∶ π0(𝒳) ∖ {0} ⟶ 𝑇

to a totally ordered set 𝑇 , satisfying the following conditions:

(i) If 𝛼1, 𝛼2 ∈ π0(𝒳) ∖ {0} and 𝜏(𝛼1) ⩽ 𝜏(𝛼2), then 𝜏(𝛼1) ⩽ 𝜏(𝛼1 + 𝛼2) ⩽ 𝜏(𝛼2).
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(ii) For any class 𝛼 ∈ π0(𝒳), the semistable locus

𝒳 ss𝛼 (𝜏) = 𝒳𝛼 \ ⋃
𝛼=𝛼1+𝛼2

𝜏(𝛼1)>𝜏(𝛼2)

ev1(𝒳+𝛼1,𝛼2) (3.5.4.1)

is open in 𝒳𝛼 , where 𝛼1, 𝛼2 are assumed non-zero. Moreover, for any 𝑡 ∈ 𝑇 , the union

𝒳 ss(𝜏 ; 𝑡) = {0} ∪ ∐
𝛼∈π0(𝒳)∖{0}∶

𝜏(𝛼)=𝑡

𝒳 ss𝛼 (𝜏) (3.5.4.2)

is an open linear substack of 𝒳 .

(iii) The open substacks

𝒵𝛼1,…,𝛼𝑛(𝜏) = 𝒳 ss𝛼1(𝜏) ×⋯ × 𝒳 ss𝛼𝑛(𝜏) ⊂ 𝒳𝛼1 ×⋯ × 𝒳𝛼𝑛 ,
𝒮𝛼1,…,𝛼𝑛(𝜏) = gr−1(𝒵𝛼1,…,𝛼𝑛(𝜏)) ⊂ 𝒳+𝛼1,…,𝛼𝑛

for all 𝑛 ⩾ 0 and classes 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} with 𝜏(𝛼1) > ⋯ > 𝜏(𝛼𝑛) define a
Θ-stratification of 𝒳 in the sense of §3.5.3.

More precisely, the last condition means that for each choice of 𝛼1, … , 𝛼𝑛 as above, we choose
an element 𝜆 as in §3.5.3 such that 𝒳𝜆 ≃ 𝒳𝛼1 ×⋯ × 𝒳𝛼𝑛 and 𝒳+

𝜆 ≃ 𝒳+𝛼1,…,𝛼𝑛 , and we set 𝒵𝜆

and 𝒮𝜆 as above; for all other 𝜆, we set them to be empty.

3.5.5. Examples. Here are some examples of stability conditions on linear stacks.

(i) Let 𝒳 be any linear stack. The constant map 𝜏 ∶ π0(𝒳) ∖ {0} → {0} is called the trivial

stability condition, where 𝒳 ss𝛼 (𝜏) = 𝒳𝛼 for all 𝛼 .
(ii) Let 𝒳 be the moduli stack of representations of a quiver 𝑄. Then any slope function

𝜇 ∶ 𝑄0 → ℚ induces a stability condition on 𝒳 given by

𝜏(𝑑) =
∑𝑖∈𝑄0 𝑑𝑖 ⋅ 𝜇(𝑖)

∑𝑖∈𝑄0 𝑑𝑖
for non-zero dimension vectors 𝑑 ∈ π0(𝒳) ∖ {0}, where the Θ-stratification can be

constructed from Ibáñez Núñez [75, Theorem 2.6.3]. See §4.1 for more details.

(iii) Let 𝒳 be the moduli stack of coherent sheaves on a projective scheme 𝑌 over a field 𝐾
of characteristic zero. Then Gieseker stability is a stability condition on 𝒳 , where the

choice of 𝜏 is described in Joyce [81, Example 4.16], and the Θ-stratification exists by
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Alper, Halpern-Leistner, and Heinloth [5, Example 7.28].

3.5.6. Stability for self-dual linear stacks. Let 𝒳 be a self-dual linear stack over 𝐾 , and let 𝜏
be a stability condition on 𝒳 . We say that 𝜏 is self-dual, if the following condition holds:

• For any 𝛼, 𝛽 ∈ π0(𝒳) ∖ {0}, we have 𝜏(𝛼) ⩽ 𝜏(𝛽) if and only if 𝜏(𝛼∨) ⩾ 𝜏(𝛽∨).

In this case, for each 𝜃 ∈ π0(𝒳 sd), writing 𝛼 = 𝑗(𝜃) for the corresponding class in π0(𝒳), we
have the semistable locus

𝒳 sd,ss
𝜃 (𝜏) = 𝒳 ss𝛼 (𝜏)ℤ2 ∩ 𝒳 sd

𝜃 ⊂ 𝒳 sd
𝜃 , (3.5.6.1)

where 𝒳 sd
𝜃 ⊂ (𝒳𝛼)ℤ2 as an open and closed substack.

Note also that the open linear substack 𝒳 ss(𝜏 ; 0) ⊂ 𝒳 defined in (3.5.4.2) is self-dual.

We have an induced Θ-stratification of 𝒳 sd given by the open substacks

𝒵 sd
𝛼1,…,𝛼𝑛 ,𝜃(𝜏) = 𝒳 ss𝛼1(𝜏) ×⋯ × 𝒳 ss𝛼𝑛(𝜏) × 𝒳 sd,ss

𝜃 (𝜏) ⊂ 𝒳𝛼1 ×⋯ × 𝒳𝛼𝑛 × 𝒳 sd
𝜃 ,

𝒮 sd
𝛼1,…,𝛼𝑛 ,𝜃(𝜏) = gr−1(𝒵 sd

𝛼1,…,𝛼𝑛 ,𝜃(𝜏)) ⊂ 𝒳 sd,+
𝛼1,…,𝛼𝑛 ,𝜃 ,

where 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳)∖{0} and 𝜃 ∈ π0(𝒳 sd) are classes such that 𝜏(𝛼1) > ⋯ > 𝜏(𝛼𝑛) > 0.
These strata and centres can also be realized as ℤ2-fixed loci in the strata and centres of the

Θ-stratification of 𝒳 given by 𝜏 .

3.5.7. Permissibility. Let 𝒳 be a linear stack over 𝐾 , and let 𝜏 be a stability condition on 𝒳 .

We say that 𝜏 is permissible, if the following condition holds:

• For any 𝛼 ∈ π0(𝒳), the semistable locus 𝒳 ss𝛼 (𝜏) ⊂ 𝒳𝛼 is quasi-compact.

This is similar to the notion of permissibleweak stability conditions in Joyce [81, Definition 4.7]

and Joyce and Song [87, Definition 3.7].

3.5.8. Lemma. Let𝒳 be a linear stack over𝐾 , and let 𝜏 be a permissible stability condition on𝒳 .

Then for any 𝛼 ∈ π0(𝒳) ∖ {0}, there are only finitely many decompositions 𝛼 = 𝛼1 +⋯ + 𝛼𝑛
into classes 𝛼𝑖 ∈ π0(𝒳) ∖ {0}, such that 𝜏(𝛼𝑖) = 𝜏(𝛼) and 𝒳 ss𝛼𝑖(𝜏) ≠ ∅ for all 𝑖.

Proof. Let 𝑡 = 𝜏(𝛼). Then the open substack

𝒳(𝜏; 𝑡) = {0} ∪ ∐
𝛽∈π0(𝒳)∖{0}∶

𝜏(𝛽)=𝑡

𝒳 ss𝛽 (𝜏) ⊂ 𝒳
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is again a linear stack. Replacing 𝒳 by 𝒳(𝜏; 𝑡), we may assume that 𝒳 has quasi-compact

connected components, and that 𝜏 is trivial.

By the finiteness theorem of the author et al. [30, Theorem 6.2.3], each connected com-

ponent of 𝒳 has finitely many special faces. In this case, this is the statement that for any

𝛼 ∈ π0(𝒳)∖{0}, there are finitely many decompositions 𝛼 = 𝛼1+⋯+𝛼𝑛, such that all other

decompositions can be obtained from combining terms in these decompositions, and hence

the total number of decompositions is finite.

3.6 Derived algebraic geometry

3.6.1. In the remainder of this chapter, we discuss derived enhancements of ideas and con-

cepts discussed above, using derived algebraic geometry. For example, moduli stacks will be

upgraded to derived algebraic stacks, and the extra derived structure will be useful later in the

thesis.

This section provides background material on derived algebraic geometry. We mainly

follow Toën and Vezzosi [152; 153] and Pantev, Toën, Vaquié, and Vezzosi [130]. See Khan

[92] for a gentle introduction to derived algebraic geometry. Other useful references include

Lurie [104; 107] and Calaque, Haugseng, and Scheimbauer [36, Appendix B].

3.6.2. The étale topology. Let dAff be the ∞-category of derived affine schemes, defined as

the opposite category sCRingop of the ∞-category of simplicial commutative rings.

For a morphism𝐴 → 𝐵 in sCRing, denote by Spec𝐵 → Spec𝐴 the corresponding morph-

ism in dAff . We say that such a morphism is an étale surjection, if the following hold:

(i) For each 𝑛 ∈ ℕ, the inducedmorphism π𝑛(𝐴)⊗π0(𝐴)π0(𝐵) → π𝑛(𝐵) is an isomorphism.

(ii) The morphism Specπ0(𝐵) → Specπ0(𝐴) of usual schemes is an étale surjection.

A finite family (Spec𝐵𝑖 → Spec𝐴)𝑖∈𝐼 is an étale cover if the induced morphism Spec∏𝑖 𝐵𝑖 →
Spec𝐴 is an étale surjection. This notion of covering defines the étale topology on dAff .

3.6.3. Derived stacks. A derived stack is a functor

𝒳 ∶ dAffop ⟶ ∞-Grpd ,
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such that it is an ∞-sheaf with respect to the étale topology on dAff . This means more pre-

cisely the following conditions:

(i) 𝒳 preserves finite products, that is, it sends finite coproducts in dAff to products.

(ii) For each étale surjection Spec𝐵 → Spec𝐴 in dAff , the induced morphism

𝒳(𝐴) ⟶ lim ( 𝒳(𝐵) 𝒳(𝐵 ⊗𝐴 𝐵) ⋯


 




 )

is an isomorphism, where we take the limit of a cosimplicial diagram. Here, 𝐴 and 𝐵
are objects in sCRing, and Spec𝐴 and Spec𝐵 are the corresponding objects in dAff .

See Toën and Vezzosi [153, Corollary 1.3.2.4] for details.

Derived stacks form an ∞-category dSt, as a full subcategory of the functor category

Fun(dAffop, ∞-Grpd) consisting of derived stacks.

We have a notion of derived algebraic stacks, called locally geometric stacks in Toën and

Vaquié [151], defined as those stacks that admit an open cover by geometric stacks in the sense

of Toën and Vezzosi [153, Lemma 2.2.3.1 ff.].

For a derived stack 𝒳 , its classical truncation 𝒳cl is the restriction of 𝒳 to the full subcat-

egory Affop ⊂ dAffop. If its image lands in Grpd ⊂ ∞-Grpd, and if 𝒳cl is a classical algebraic

stack, we sometimes say that 𝒳 is a derived Artin stack.

A derived algebraic stack 𝒳 that is (homotopically) locally of finite presentation over a

field 𝐾 admits a cotangent complex 𝕃𝒳 , which is a perfect complex on𝒳 . Its dual is called the

tangent complex of 𝑓 , denoted by 𝕋𝒳 . However, note that this notion of finite presentation is

very different from the classical one; see Khan [92, Warning 1.3.49].

For derived stacks𝒳,𝒴 defined over a base derived stack 𝒮 , we have the derived mapping

stack dℳap𝒮 (𝒳 ,𝒴), defined similarly to §3.1.7. We often omit the base 𝒮 when it is clear

from context.

3.6.4. Moduli of objects in dg-categories. A main source of derived algebraic stacks for us

is from moduli stacks of objects in dg-categories, constructed by Toën and Vaquié [151].

Let 𝐾 be a commutative ring, and let 𝒞 be a 𝐾 -linear dg-category of finite type, in the

sense of [151, Definition 2.4]. The moduli stack ℳ𝒞 of right proper objects in 𝒞 is a derived

47



stack over 𝐾 defined by the moduli functor

ℳ𝒞 (𝑅) = dgCat𝐾(𝒞 op,Perf(𝑅)) (3.6.4.1)

for simplicial commutative 𝐾 -algebras 𝑅, where dgCat𝐾(−, −) denotes the mapping space of

𝐾 -linear dg-categories. By [151, Theorem 3.6],ℳ𝒞 is a derived algebraic stack locally of finite

presentation over 𝐾 .

In particular, we have the moduli stack

𝒫 erf = ℳPerf(𝐾) (3.6.4.2)

of perfect complexes over𝐾 , and for any smooth and proper𝐾 -scheme𝑋 , we have the derived

mapping stack

𝒫 erf (𝑋) = dℳap(𝑋 ,𝒫 erf ) , (3.6.4.3)

or the moduli stack of perfect complexes on 𝑋 , which is also algebraic and locally of finite

presentation over 𝐾 . See [151, Definition 3.28 ff.] for details on this.

3.6.5. Total stacks of perfect complexes. Another construction of derived algebraic stacks is

as total stacks of perfect complexes on other schemes or stacks.

Let 𝒳 be a derived algebraic stack, and let 𝐸 ∈ Perf(𝒳) be a perfect complex on 𝒳 . Its

total stack is the derived stack

ℰ = 𝒮pec𝒳 (Sym(𝐸∨)) , (3.6.5.1)

as a relative spectrum of a possibly non-connective algebra object over 𝒳 , meaning that we

define it by the universal property that

dSt/𝒳 (Spec𝐴,ℰ) ≃ Alg𝐴(Sym𝐴(𝐸∨|Spec𝐴),𝐴) (3.6.5.2)

for all morphisms Spec𝐴 → 𝒳 for Spec𝐴 ∈ dAff , where Alg𝐴(−, −) denotes the mapping

space of 𝐴-algebras.

The total stackℰ is algebraic, and the morphismℰ → 𝒳 is finitely presented. See Calaque

[35, §2] for details of this construction.

For example, if𝒳 is a classical scheme and 𝐸 is a vector bundle on𝒳 , then ℰ is the usual
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total space of 𝐸.
When 𝒳 is locally finitely presented over a base 𝒮 , we often consider the 𝑛-shifted cotan-

gent stack T∗[𝑛]𝒳/𝒮 , defined as the total stack of the shifted cotangent complex 𝕃𝒳/𝒮 [𝑛],
which is a perfect complex. The base 𝒮 is usually omitted from the notation.

3.6.6. Derived graded points. The stacks of graded and filtered points defined in §3.2.3 have

derived versions, simply by replacing the mapping stack with the derived mapping stack de-

scribed in §3.6.3. Namely, for a derived stack 𝒳 , we define

d𝒢rad(𝒳) = dℳap(∗/𝔾m, 𝒳) , (3.6.6.1)

dℱilt(𝒳) = dℳap(𝔸1/𝔾m, 𝒳) . (3.6.6.2)

Note that even if 𝒳 is a classical algebraic stack, these derived stacks may have non-trivial

derived structure, meaning that they can be different from the classical versions. However, we

always have d𝒢rad(𝒳)cl ≃ 𝒢rad(𝒳) and dℱilt(𝒳)cl ≃ ℱilt(𝒳).

3.6.7. Shifted symplectic structures. A main reason for working with derived stacks in this

thesis is to work with shifted symplectic structures, which are possessed by some moduli stacks

of interest, and they contain rich geometric information that sometimes cannot be seen from

classical stacks.

For a derived algebraic stack 𝒳 locally finitely presented over a field 𝐾 of characteristic

zero, and an integer 𝑛 ∈ ℤ, an 𝑛-shifted symplectic structure on 𝒳 is an 𝑛-shifted closed 2-
form 𝜔 on 𝒳 that induces an isomorphism

𝜔 ∶ 𝕋𝒳 ∼⟶ 𝕃𝒳 [𝑛] . (3.6.7.1)

See Pantev, Toën, Vaquié, and Vezzosi [130] or Park and You [131] for precise definitions.

A basic example of 𝑛-shifted symplectic stacks is the 𝑛-shifted cotangent stack 𝕋∗[𝑛]𝒳
of a derived stack 𝒳 locally finitely presented over 𝐾 , defined in §3.6.5, analogous to the

usual canonical symplectic structure on the cotangent bundle of a manifold. See Calaque [35,

Theorem 2.4] for the construction of the shifted symplectic structure.

As another example, the moduli stack of objects in a Calabi–Yau dg-category of degree

𝑑 ∈ ℤ admits a (2−𝑑)-shifted symplectic structure, by Brav and Dyckerhoff [21, Theorem 5.6].
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Finally, as in Pantev, Toën, Vaquié, and Vezzosi [130, §2.1] or Calaque, Haugseng, and

Scheimbauer [36], the derivedmapping stack from a 𝑑-oriented stack to an 𝑛-shifted symplectic

stack admits an (𝑛 − 𝑑)-shifted symplectic structure.

3.6.8. Orientations. We now introduce an extra piece of data on shifted symplectic stacks,

called orientations or spin structures, that will be used in various constructions later on.

For an 𝑛-shifted symplectic stack 𝒳 with 𝑛 odd, consider its canonical line bundle 𝐾𝒳 =
det𝕃𝒳 . The isomorphism (3.6.7.1) induces an isomorphism 𝐾⊗2

𝒳 ∼→ 𝒪𝒳 .

An orientation of 𝒳 is a pair (𝐾 1/2𝒳 , 𝑜𝒳 ), where 𝐾 1/2𝒳 is a line bundle on 𝒳 , and

𝑜𝒳 ∶ (𝐾 1/2𝒳 )⊗2 ∼⟶ 𝐾𝒳 (3.6.8.1)

is an isomorphism that squares to the canonical one. We sometimes abbreviate the pair as 𝑜𝒳 ,

and we call the pair (𝒳 , 𝑜𝒳 ) an oriented 𝑛-shifted symplectic stack.

3.6.9. Example. The derived critical locus. Let𝒰 be a smooth algebraic stack over 𝐾 , and let

𝑓 ∶ 𝒰 → 𝔸1 be a function. The derived critical locus of 𝑓 is the derived algebraic stack

dCrit(𝑓 ) = 𝒰 ×
0, T∗𝒰, 𝑑𝑓

𝒰 , (3.6.9.1)

whose classical truncation is the classical critical locus Crit(𝑓 ). It admits a canonical (−1)-
shifted symplectic structure by, for example, Bozec, Calaque, and Scherotzke [19, §4.2.1]. In

fact, this construction holds for any derived algebraic stack 𝒰 locally of finite presentation

over 𝐾 .

Moreover, dCrit(𝑓 ) admits a canonical orientation given by

𝐾 1/2
dCrit(𝑓 ) = 𝐾𝒰 |dCrit(𝑓 ) , (3.6.9.2)

where we restrict along either projection dCrit(𝑓 ) → 𝒰 .

3.7 Derived linear stacks

3.7.1. We now discuss derived linear stacks, which are linear stacks introduced in §§3.3–3.4

equippedwith compatible derived structure. These stackswill be used tomodel derivedmoduli

stacks of objects in linear categories.

50



Note that moduli stacks of objects in dg-categories discussed in §3.6.4 will not be examples

of derived linear stacks, since their classical truncations are not classical algebraic stacks, but

rather higher stacks. Instead, roughly speaking, wewill consider open substacks in these stacks

that correspond to subcategories of the original dg-category that are 1-categories, such as

hearts, and these substacks will be derived linear stacks. See §4.2 below for details.

3.7.2. Derived linear stacks. Let 𝐾 be a field. Define a derived linear stack over 𝐾 to be the

following data:

• A derived algebraic stack 𝒳 locally finitely presented over 𝐾 .

• A commutative monoid (i.e., 𝔼∞-algebra) structure on 𝒳 in the ∞-category dSt𝐾 , with

multiplication morphism ⊕∶ 𝒳 × 𝒳 → 𝒳 and unit 0 ∈ 𝒳(𝐾).
• A ∗/𝔾m-action ⊙∶ ∗/𝔾m × 𝒳 → 𝒳 respecting the monoid structure.

We require the following additional property:

• There is an isomorphism

∐
𝛾 ∶ ℤ→π0(𝒳)

∏
𝑛∈supp(𝛾)

𝒳𝛾(𝑛) ∼⟶ d𝒢rad(𝒳) , (3.7.2.1)

defined as in §3.3.2.

3.7.3. Shifted symplectic linear stacks. Now let 𝐾 be a field of characteristic zero. As in the

author et al. [29, §3.1.7], for an integer 𝑛 ∈ ℤ, define an 𝑛-shifted symplectic linear stack to be

the following data:

• A derived linear stack 𝒳 over 𝐾 .

• An 𝑛-shifted symplectic structure 𝜔 on 𝒳 , such that

⊕∗(𝜔) ≃ 𝜔 ⊞ 𝜔 (3.7.3.1)

on𝒳×𝒳 , where𝜔⊞𝜔 = pr∗1(𝜔)+pr∗2(𝜔), and pr1, pr2 ∶ 𝒳 ×𝒳 → 𝒳 are the projections.

Note that the requirement (3.7.3.1) is weaker than the perhaps more natural one requiring this

equivalence together with higher coherence data. However, this weaker condition is sufficient

for our applications in this thesis.
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3.7.4. Orientation data. We introduce a compatibility condition for orientations, as in §3.6.8,

on shifted symplectic linear stacks, called orientation data following Kontsevich and Soibelman

[97].

Let𝒳 be an 𝑛-shifted symplectic linear stack, with 𝑛 odd, and let 𝑜𝒳 be an orientation of𝒳
as in §3.6.8. By [29, §6.1.6], this induces an orientation 𝑜𝒢rad(𝒳) of 𝒢rad(𝒳). An orientation

𝑜𝒳 is called an orientation data, if it satisfies the following compatibility condition:

• Under the isomorphism (3.3.2.1), the induced orientation 𝑜𝒢rad(𝒳) of 𝒢rad(𝒳) agrees
with the product orientations on the left-hand side.

By Joyce and Upmeier [88, Theorem 3.6], such an orientation data exists canonically onmoduli

stacks of coherent sheaves on Calabi–Yau threefolds.

3.7.5. Self-dual orientation data. Now, let𝒳 be a self-dual (−1)-shifted symplectic linear stack,

that is, a stack 𝒳 as in §3.7.4, equipped with a ℤ2-action preserving the symplectic form 𝜔,
compatible with the monoid structure ⊕ and inverting the ∗/𝔾m-action ⊙.

In this case, the fixed locus 𝒳 sd = 𝒳ℤ2 carries an induced (−1)-shifted symplectic struc-

ture. However, an orientation of 𝒳 does not naturally induce one on 𝒳 sd.

We define a self-dual orientation data on 𝒳 to be a pair (𝑜𝒳 , 𝑜𝒳 sd) of orientations of 𝒳
and 𝒳 sd, respectively, satisfying the following conditions:

(i) 𝑜𝒳 is an orientation data.

(ii) Under the isomorphism (3.4.3.1), the induced orientation of 𝒢rad(𝒳 sd) agrees with the

product orientations on the right-hand side.

The author does not know if such a self-dual orientation data, or even an orientation, exists in

the case of coherent sheaves on Calabi–Yau threefolds, which we will discuss in §4.2 and §8.3

below.

3.8 The attractor correspondence

3.8.1. In this section, we study the attractor correspondence

𝒢rad(𝒳) gr⟵ ℱilt(𝒳) ev⟶ 𝒳 (3.8.1.1)
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for an algebraic stack𝒳 , defined in §3.2.3, together with its derived version, which will be an

important tool for constructions later on.

3.8.2. Local structure. We first discuss how étale local models of an algebraic stack interact

with its stacks of graded and filtered points.

Let 𝒳 be an algebraic stack over 𝐾 as in §3.2.2, and let (𝒳𝑖 → 𝒳)𝑖∈𝐼 be a representable
étale cover, where each 𝒳𝑖 ≃ 𝑆𝑖/𝐺𝑖, with 𝑆𝑖 an algebraic space over 𝐾 and 𝐺𝑖 a reductive

group. Then there are commutative diagrams

𝑆𝜆𝑖 /𝐿𝑖,𝜆 𝑆𝜆,+𝑖 /𝑃𝑖,𝜆 𝑆𝑖/𝐺𝑖

𝒢rad(𝒳) ℱilt(𝒳) 𝒳 ,

 

 
⌝

 gr ev

(3.8.2.1)

where all vertical arrows are representable and étale, 𝜆 ∶ 𝔾m → 𝐺𝑖 is a cocharacter, and the

left-hand square is a pullback square by [30, Theorem 5.2.7]. Moreover, the families

(𝑆𝜆𝑖 /𝐿𝑖,𝜆 ⟶ 𝒢rad(𝒳))𝑖∈𝐼 , 𝜆 ∶ 𝔾m→𝐺𝑖 ,
(𝑆𝜆,+𝑖 /𝑃𝑖,𝜆 ⟶ ℱilt(𝒳))𝑖∈𝐼 , 𝜆 ∶ 𝔾m→𝐺𝑖

are representable étale covers of 𝒢rad(𝒳) and ℱilt(𝒳), respectively, which follows from

Halpern-Leistner [65, Corollary 1.1.7] and the pullback square in (3.8.2.1).

3.8.3. Deformation theory. For a derived algebraic stack 𝒳 locally of finite presentation

over 𝐾 , one can express the tangent complexes of d𝒢rad(𝒳) and dℱilt(𝒳) in terms of

that of 𝒳 . Concretely, by Halpern-Leistner and Preygel [67, Proposition 5.1.10], or Halpern-

Leistner [65, Lemma 1.2.2], we have

𝕋d𝒢rad(𝒳) ≃ tot∗(𝕋𝒳 )0 , (3.8.3.1)

𝕋dℱilt(𝒳) ≃ 𝑞∗ ∘ 𝑝∗(𝕋𝒳 ) , (3.8.3.2)

where (−)0 denotes the weight 0 part with respect to the natural 𝔾m-action, 𝑝 ∶ 𝔸1/𝔾m ×
dℱilt(𝒳) → 𝒳 is the evaluation morphism, and 𝑞 ∶ 𝔸1/𝔾m × dℱilt(𝒳) → dℱilt(𝒳) is the
projection.

3.8.4. Shifted Lagrangian correspondences. Now suppose that 𝐾 is algebraically closed of

characteristic 0. Let 𝒳 and 𝒴 be oriented 𝑛-shifted symplectic stacks over 𝐾 , as in §3.6.8,
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where 𝑛 is odd.

As in Pantev, Toën, Vaquié, and Vezzosi [130, Definition 2.8] or Calaque, Haugseng, and

Scheimbauer [36, §2.4], a diagram

𝒳 𝑓⟵ ℒ 𝑔⟶ 𝒴 (3.8.4.1)

is called an 𝑛-shifted Lagrangian correspondence, roughly if we have an exact triangle

𝕋ℒ ⟶ 𝑓 ∗(𝕋𝒳 ) ⊕ 𝑔∗(𝕋𝒴 ) ⟶ 𝕃ℒ [𝑛] ⟶ 𝕋ℒ [1] (3.8.4.2)

of perfect complexes onℒ , where the first map is (𝑓∗, −𝑔∗), and the secondmap is (𝑓 ∗, 𝑔∗)[𝑛]
composed with the identifications 𝕋𝒳 ≃ 𝕃𝒳 [𝑛] and 𝕋𝒴 ≃ 𝕃𝒴 [𝑛] given by the symplectic

structures. See [36, §2.4] for details.

An orientation of the shifted Lagrangian correspondence (3.8.4.1) is an isomorphism

𝐾ℒ ∼⟶ 𝑓 ∗(𝐾 1/2𝒳 ) ⊗ 𝑔∗(𝐾 1/2𝒴 ) , (3.8.4.3)

such that it squares to the canonical isomorphism 𝐾⊗2ℒ ≃ 𝑓 ∗(𝐾𝒳 ) ⊗ 𝑔∗(𝐾𝒴 ) induced by the

exact triangle (3.8.4.2).

3.8.5. Theorem. Let 𝐾 be an algebraically closed of characteristic 0, and let 𝒳 be an 𝑛-shifted
symplectic stack over 𝐾 , with symplectic form 𝜔.

Then we have an induced 𝑛-shifted symplectic structure tot∗(𝜔) on d𝒢rad(𝒳), and an 𝑛-
shifted Lagrangian correspondence

d𝒢rad(𝒳) gr⟵ dℱilt(𝒳) ev⟶ 𝒳 . (3.8.5.1)

Moreover, if 𝑛 is odd and 𝒳 has an orientation 𝐾 1/2𝒳 , then d𝒢rad(𝒳) has an induced orienta-

tion 𝐾 1/2
d𝒢rad(𝒳), and the Lagrangian correspondence is oriented.

Proof. The stacks d𝒢rad(𝒳) and dℱilt(𝒳) are derived algebraic stacks locally of finitely

presentation over 𝐾 , by an argument similar to Halpern-Leistner and Preygel [67, §5.1.5].

To prove that (3.8.5.1) is an 𝑛-shifted Lagrangian correspondence, by Calaque [34, The-

orem 4.8], it is enough to show that the cospan

∗/𝔾m
0⟶ 𝔸1/𝔾m

1⟵ ∗ (3.8.5.2)
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is a 0-oriented cospan, in the sense of [34, §4.2] and Calaque, Haugseng, and Scheimbauer [36,

§2.5]. Indeed, ∗ carries a natural 0-orientation, and the 0-orientation on ∗/𝔾m is given by

the isomorphism ℝΓ(𝒪∗/𝔾m) ∼→ 𝐾 . To see that this is indeed a 0-orientation, we check the

condition in [130, Definition 2.4]. For𝐴 ∈ CdgA⩽0𝐾 and a perfect complex ℰ ∈ Perf(Spec𝐴×
(∗/𝔾m)), one has 𝑝∗(ℰ∨)∨ ≃ 𝑝∗(ℰ) on Spec𝐴, where 𝑝 ∶ Spec𝐴× (∗/𝔾m) → Spec𝐴 is the

projection, since both sides are the weight 0 part of the induced 𝔾m-action on 𝜋∗(ℰ), where
𝜋 ∶ Spec𝐴 → Spec𝐴 × (∗/𝔾m) is the projection.

To see that (3.8.5.2) is a 0-oriented cospan, we check the condition in [36, Lemma 2.5.5].

For any 𝐴 ∈ CdgA⩽0𝐾 and ℰ ∈ Perf(Spec𝐴 × (𝔸1/𝔾m)), we need to show that the induced

commutative diagram

𝑞∗(ℰ) 𝑝∗ ∘ 0∗(ℰ)

1∗(ℰ) 𝑞∗(ℰ∨)∨







(3.8.5.3)

in Perf(𝐴) is cartesian, where 𝑝 and 𝑞 are the projections from Spec𝐴×[∗/𝔾m] and Spec𝐴×
[𝔸1/𝔾m] to Spec𝐴, respectively. Indeed, as in Halpern-Leistner [66, Proposition 1.1.2 ff.],

such an object ℰ can be seen as a filtered object in Perf(𝐴), that is, a sequence of maps

⋯ ⟶ 𝐸⩾1 ⟶ 𝐸⩾0 ⟶ 𝐸⩾−1 ⟶ ⋯

in Perf(𝐴), where all but finitely many arrows are isomorphisms, such that 𝐸⩾𝑛 = 0 for 𝑛 ≫ 0.
Write 𝐸𝑛 = cofib(𝐸⩾𝑛+1 → 𝐸⩾𝑛), and write 𝐸 = colim𝑛→−∞ 𝐸⩾𝑛. Then 0∗(ℰ) ≃ ⨁𝑛 𝐸𝑛, with

the natural 𝔾m-action having weight 𝑛 on 𝐸𝑛. One can deduce from [66, Proposition 1.1.2 ff.]

that we have natural identifications

𝑞∗(ℰ) ≃ 𝐸⩾0 ,
𝑝∗ ∘ 0∗(ℰ) ≃ 𝐸0 ,

1∗(ℰ) ≃ 𝐸 ,
𝑞∗(ℰ∨)∨ ≃ ((𝐸∨)⩾0)∨ ≃ 𝐸⩽0 ,

where 𝐸⩽0 = cofib(𝐸⩾1 → 𝐸), and the arrows in the diagram (3.8.5.3) are the natural ones.

This implies that (3.8.5.3) is cartesian.
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For the final statement, observe that

tot∗(𝐾𝒳 ) ≃ det(tot∗(𝕃𝒳 )0) ⊗ det(tot∗(𝕃𝒳 )+) ⊗ det(tot∗(𝕃𝒳 )−)
≃ 𝐾d𝒢rad(𝒳) ⊗ det(tot∗(𝕃𝒳 )+) ⊗ det((tot∗(𝕃𝒳 )+)∨[−𝑠])
≃ 𝐾d𝒢rad(𝒳) ⊗ det(tot∗(𝕃𝒳 )+)2 ,

where (−)0, (−)+, (−)− denote the parts with zero, positive, and negative weights, respectively,
with respect to the natural 𝔾m-action. Therefore, we may define

𝐾 1/2
d𝒢rad(𝒳) = tot∗(𝐾 1/2𝒳 ) ⊗ det(tot∗(𝕃𝒳 )+)−1 , (3.8.5.4)

and this gives an orientation on d𝒢rad(𝒳). To see that the 𝑛-shifted Lagrangian correspond-

ence is oriented, consider the cartesian diagram

𝕋dℱilt(𝒳) gr∗(𝕋d𝒢rad(𝒳))

ev∗(𝕋𝒳 ) 𝕃dℱilt(𝒳)[𝑠]




⌜




(3.8.5.5)

in Perf(dℱilt(𝒳)), witnessing the 𝑛-shifted Lagrangian correspondence structure. Write

ℰ = 𝑟∗(𝕋𝒳 ), where 𝑟 ∶ [𝔸1/𝔾m] × dℱilt(𝒳) → 𝒳 is the evaluation morphism. As in

the argument above, ℰ can be seen as a filtered object in Perf(dℱilt(𝒳)), and the terms

in (3.8.5.5) can be identified with 𝐸⩾0, 𝐸0, 𝐸, and 𝐸⩽0, respectively. In particular, one has

𝐾dℱilt(𝒳) ≃ gr∗(𝐾 1/2
d𝒢rad(𝒳)) ⊗ ev∗(𝐾 1/2𝒳 ), as both sides can be identified with det(𝐸⩾0)−1.
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Chapter 4

Examples

4.1 Self-dual quivers

4.1.1. As a basic example of orthosymplectic enumerative geometry, we discuss self-dual

quivers and their self-dual representations. Such representations are analogous to orthogonal

and symplectic principal bundles on a variety, similar to how the usual quiver representations

are analogous to vector bundles or coherent sheaves on varieties.

Self-dual quivers were first introduced by Derksen andWeyman [49] as a special case of𝐺-

quivers for𝐺 = O(𝑛) or Sp(2𝑛), and studied by Young [157–159] in the context of Donaldson–
Thomas theory.

Throughout, we fix a base field 𝐾 .

4.1.2. Quivers. Recall that a quiver is a quadruple 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡), where

• 𝑄0 is a finite set, called the set of vertices.

• 𝑄1 is a finite set, called the set of edges.

• 𝑠, 𝑡 ∶ 𝑄1 → 𝑄0 are maps sending each edge to its source and target, respectively.

A representation of𝑄 is the data𝐸 = ((𝐸𝑖)𝑖∈𝑄0 , (𝑒𝑎)𝑎∈𝑄1), where each𝐸𝑖 is a finite-dimensional

𝐾 -vector space, and each 𝑒𝑎 ∶ 𝐸𝑠(𝑎) → 𝐸𝑡(𝑎) is a linear map.

We denote by Mod(𝐾𝑄) the 𝐾 -linear abelian category of finite-dimensional represent-

ations of 𝑄 over 𝐾 , where 𝐾𝑄 stands for the path algebra of 𝑄, which is a possibly non-

commutative 𝐾 -algebra whose representations are equivalent to representations of 𝑄.

See, for example, Derksen and Weyman [50], for background on quivers.
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4.1.3. Self-dual quivers. We define a self-dual quiver to be a quiver 𝑄 equipped with the fol-

lowing data:

• A contravariant involution (−)∨ ∶ 𝑄 ∼⟶ 𝑄op, where 𝑄op = (𝑄0, 𝑄1, 𝑡 , 𝑠) is the opposite
quiver of 𝑄, such that (−)∨∨ = id.

• Choices of signs 𝑢 ∶ 𝑄0 ⟶ {±1} and 𝑣 ∶ 𝑄1 ⟶ {±1}, such that 𝑢(𝑖) = 𝑢(𝑖∨) for all
𝑖 ∈ 𝑄0, and 𝑣(𝑎) 𝑣(𝑎∨) = 𝑢(𝑠(𝑎)) 𝑢(𝑡(𝑎)) for all 𝑎 ∈ 𝑄1.

This data is called a self-dual structure on 𝑄.

In this case, the abelian category Mod(𝐾𝑄) admits a self-dual structure in the sense of

§2.1.2, defined as follows. For a representation 𝐸 = ((𝐸𝑖)𝑖∈𝑄0 , (𝑒𝑎)𝑎∈𝑄1), define the dual repres-
entation𝐸∨ by assigning the vector space (𝐸𝑖∨)∨ to the vertex 𝑖, and the linearmap 𝑣(𝑎)⋅(𝑒𝑎∨)∨

to the edge 𝑎. Then, identify 𝐸∨∨ with 𝐸 using the sign 𝑢(𝑖) at each vertex 𝑖.
As in §2.1.2, we have the groupoidMod(𝐾𝑄)sd of self-dual representations of 𝑄.

4.1.4. Example. Consider the quiver

𝑄 = (
•

• •
•



  ) ,

with the involution (−)∨ ∶ 𝑄 ∼→ 𝑄op given by horizontal flipping. Then the self-dual structure

onMod(𝐾𝑄) is given by

𝐸2 𝐸∨2

𝐸1 𝐸4 𝐸∨4 𝐸∨1 ,

𝐸3 𝐸∨3


𝑒24


𝑣12⋅𝑒∨12𝑒12

𝑒13

 (−)∨
𝑣24⋅𝑒∨24

𝑣13⋅𝑒∨34


𝑒34


𝑣13⋅𝑒∨13

where 𝑣12 ∈ {±1} is the value of 𝑣 on the edge 𝑒12, etc., and we identify 𝐸𝑖 ≃ 𝐸∨∨𝑖 using the

sign 𝑢(𝑖).
In particular, a self-dual representation of 𝑄 must have 𝐸4 ≃ 𝐸∨4 , and the isomorphisms

𝐸2 ≃ 𝐸∨2 and𝐸3 ≃ 𝐸∨3 define either orthogonal or symplectic structures on the vector spaces𝐸2

and 𝐸3, depending on the signs 𝑢2 and 𝑢3.

4.1.5. Moduli stacks. Recall that for a quiver 𝑄, the moduli stack𝒳𝑄 of representations of 𝑄
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over 𝐾 is given by the disjoint union of quotient stacks

𝒳𝑄 = ∐
𝛼∈ℕ𝑄0

𝑉𝛼/𝐺𝛼 , (4.1.5.1)

where 𝑉𝛼 = ⨁𝑎∈𝑄1 Hom(𝐾𝛼𝑠(𝑎) , 𝐾𝛼𝑡(𝑎)), and 𝐺𝛼 = ∏𝑖∈𝑄0 GL(𝛼𝑖).
If 𝑄 is equipped with a self-dual structure, the self-dual structure on Mod(𝐾𝑄) extends

to an involution of 𝒳𝑄 , establishing it as a self-dual linear stack. The fixed locus 𝒳 sd𝑄 of the

involution is the moduli stack of self-dual representations of 𝑄. Explicitly, we have

𝒳 sd𝑄 ≃ ∐
𝜃∈(ℕ𝑄0)sd

𝑉 sd
𝜃 /𝐺sd

𝜃 , (4.1.5.2)

where (ℕ𝑄0)sd ⊂ ℕ𝑄0 is the subset of dimension vectors 𝜃 such that 𝜃𝑖 = 𝜃𝑖∨ for all 𝑖 ∈ 𝑄0

and 𝜃𝑖 is even if 𝑖 = 𝑖∨ and 𝑢(𝑖) = −1. The vector space 𝑉 sd
𝜃 and the group 𝐺sd

𝜃 are given by

𝑉 sd
𝜃 = ∏

𝑎∈𝑄∘1/ℤ2
Hom(𝐾𝜃𝑠(𝑎) , 𝐾𝜃𝑡(𝑎)) × ∏

𝑎∈𝑄+1
Sym2(𝐾𝜃𝑡(𝑎)) × ∏

𝑎∈𝑄−1
∧2(𝐾𝜃𝑡(𝑎)) , (4.1.5.3)

𝐺sd
𝜃 = ∏

𝑖∈𝑄∘0/ℤ2
GL(𝜃𝑖) × ∏

𝑖∈𝑄+0
O(𝜃𝑖) × ∏

𝑖∈𝑄−0
Sp(𝜃𝑖) , (4.1.5.4)

where 𝑄∘0 is the set of vertices 𝑖 with 𝑖 ≠ 𝑖∨, and 𝑄±0 the sets of vertices 𝑖 with 𝑖 = 𝑖∨ and

𝑢(𝑖) = ±1. Similarly, 𝑄∘1 is the set of edges 𝑎 with 𝑎 ≠ 𝑎∨, and 𝑄±1 the sets of edges 𝑎 with

𝑎 = 𝑎∨ and 𝑣(𝑎) 𝑢(𝑡(𝑎)) = ±1.

4.1.6. Stability conditions. Wenow describe a commonly used class of stability conditions for

quiver representations, called slope stability, introduced by King [94] and discussed in Rudakov

[136, §3].

A slope function on a quiver 𝑄 is a map 𝜇 ∶ 𝑄0 → ℚ. Given such a map, the slope of a

dimension vector 𝛼 ∈ ℕ𝑄0 ∖ {0} is the number

𝜏(𝛼) =
∑𝑖∈𝑄0 𝛼𝑖 𝜇(𝑖)
∑𝑖∈𝑄0 𝛼𝑖

.

This defines a stability condition on the linear stack 𝒳𝑄 in the sense of §3.5.4, where the Θ-
stratification can be constructed from Ibáñez Núñez [75, Theorem 2.6.3].

If 𝑄 is equipped with a self-dual structure, then a slope function 𝜇 is said to be self-dual if

𝜇(𝑖∨) = −𝜇(𝑖) for all 𝑖 ∈ 𝑄0. In this case, the corresponding stability condition onMod(𝐾𝑄)
is self-dual, and the corresponding stability condition on 𝒳𝑄 is also self-dual.
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4.1.7. Potentials. The above discussion also generalizes to quivers with potentials, considered

by Joyce and Song [87] and Kontsevich and Soibelman [97] in the context of Donaldson–

Thomas theory, which serve as a local model for the enumerative theory of coherent sheaves

on Calabi–Yau threefolds.

We now assume that the base field 𝐾 is algebraically closed of characteristic zero.

For a quiver 𝑄, a potential on 𝑄 is an element 𝑊 ∈ 𝐾𝑄/[𝐾𝑄,𝐾𝑄], where [𝐾𝑄,𝐾𝑄] ⊂
𝐾𝑄 is the 𝐾 -linear subspace spanned by commutators. Such an element can be equivalently

described as a formal linear combination of cyclic paths in 𝑄, and there is a trace function

𝜑𝑊 = tr(𝑊)∶ 𝒳𝑄 → 𝔸1 defined by taking traces along cyclic paths in a representation. The

derived critical locus

𝒳𝑄,𝑊 = dCrit(𝜑𝑊 ) ⊂ 𝒳𝑄

admits a natural (−1)-shifted symplectic structure, and is a (−1)-shifted symplectic linear

stack, equipped with a canonical orientation data.

When𝑄 is equipped with a self-dual structure, the potential𝑊 is said to be self-dual if it is

invariant under the involution of𝐾𝑄 sending a path to its dual path, multiplied by the product

of the signs assigned to the edges in the path. In this case, the function 𝜑𝑊 is ℤ2-invariant,

so 𝒳𝑄,𝑊 is a self-dual linear stack, and the fixed locus 𝒳 sd𝑄,𝑊 admits a natural (−1)-shifted
symplectic derived structure and a canonical self-dual orientation data.

When the potential 𝑊 is zero, 𝒳𝑄,0 ≃ T∗[−1]𝒳𝑄 is the (−1)-shifted cotangent stack of

the smooth stack𝒳𝑄 , as in §5.6.5, and in particular, its classical truncation coincides with𝒳𝑄 .

Any slope function 𝜏 on 𝑄 defines a stability condition on 𝒳𝑄,𝑊 , where the existence of

a Θ-stratification follows from Ibáñez Núñez [75, Theorem 2.6.3]. For a self-dual potential 𝑊
on a self-dual quiver 𝑄, a self-dual slope function 𝜏 on 𝑄 defines a self-dual stability condition

on 𝒳𝑄,𝑊 .

4.2 Sheaves on varieties

4.2.1. Wenow discuss how to apply our framework of orthosymplectic enumerative geometry

to coherent sheaves on varieties, with the goal of eventually defining enumerative invariants
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counting orthosymplectic coherent sheaves on varieties.

As mentioned in §2.1.6, the category of coherent sheaves on a smooth projective variety is

usually not self-dual. Therefore, we take an alternative approach by considering the derived

category of coherent sheaves, which is self-dual, and then constructing self-dual subcategories

using Bridgeland stability conditions. The self-dual objects, which we call orthosymplectic

complexes, are then complexes of coherent sheaveswhich are quasi-isomorphic to their derived

duals. We will see that such complexes are parametrized by a nice moduli stack, which can be

seen as a variant of the moduli of principal 𝐺-bundles, where 𝐺 = O(𝑛) or Sp(2𝑛).
We note that this approach of defining a coherent-sheaf-like version of principal bundles

is different from the related construction of Gómez, Fernandez Herrero, and Zamora [62]. Our

approach has the advantage that it interacts well with Bridgeland stability conditions, and

satisfy wall-crossing formulae under a change of Bridgeland stability, which is an important

feature in Donaldson–Thomas theory.

4.2.2. The derived category. Let 𝑌 be a connected, smooth, projective ℂ-variety of dimen-

sion 𝑛, and consider the derived category of coherent sheaves on 𝑌 , or equivalently, perfect
complexes on 𝑌 , denoted by Perf(𝑌), which is a ℂ-linear dg-category. We construct self-dual

structures on Perf(𝑌).
Fix the data (𝐼 , 𝐿, 𝑠, 𝜀), where 𝐼 ∶ 𝑌 ∼→ 𝑌 is an involution, 𝐿 → 𝑌 is a line bundle, 𝑠 ∈ ℤ,

and 𝜀 ∶ 𝐿 ∼→ 𝐼 ∗(𝐿) is an isomorphism such that 𝐼 ∗(𝜀) ∘ 𝜀 = id𝐿. Then there is a self-dual

structure on Perf(𝑌) given by the dual functor

𝔻 = ℝℋom(𝐼 ∗(−), 𝐿)[𝑠] ∶ Perf(𝑌) ∼⟶ Perf(𝑌)op , (4.2.2.1)

and identify 𝔻(𝔻(𝐸)) with 𝐸 using the isomorphism 𝜀, for all objects 𝐸 ∈ Perf(𝑌).

4.2.3. The derived moduli stack. Consider the derived moduli stack

𝒫 erf (𝑌) ≃ dℳap(𝑌 , 𝒫 erf ) , (4.2.3.1)

of perfect complexes on 𝑌 , constructed by Toën and Vaquié [151], where 𝒫 erf on the right-

hand side is the classifying stack of perfect complexes. The stack 𝒫 erf (𝑌) is a derived algeb-

raic stack locally of finite presentation over ℂ. By Pantev, Toën, Vaquié, and Vezzosi [130,
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Corollary 2.13], if 𝑌 is a Calabi–Yau 𝑛-fold, meaning that its canonical bundle 𝐾𝑌 is trivial,

then 𝒫 erf (𝑌) has a (2 − 𝑛)-shifted symplectic structure.

Given the data (𝐼 , 𝐿, 𝑠, 𝜀) in §4.2.2, the self-dual structure on Perf(𝑌) induces a ℤ2-action

on 𝒫 erf (𝑌), and the fixed locus 𝒫 erf (𝑌)sd is the moduli stack of self-dual perfect complexes

on 𝑌 . In particular, when 𝐼 = id𝑌 and 𝜀 = ±id𝐿, the stack𝒫 erf (𝑌)sd parametrizes𝐿[𝑠]-twisted
orthogonal or symplectic complexes on 𝑌 , respectively. When 𝐿 = 𝒪𝑌 and 𝑠 = 0, we simply

call them orthogonal or symplectic complexes.

4.2.4. Next, we wish to construct abelian or quasi-abelian subcategories of Perf(𝑌) that are
preserved by the dual functor 𝔻, so they they themselves become self-dual. Their moduli

stacks of objects and self-dual objects will form open substacks of 𝒫 erf (𝑌) and 𝒫 erf (𝑌)sd,
respectively, and the latter substack can be seen roughly as a compactification of the stack of

orthogonal or symplectic bundles on 𝑌 , analogously to how coherent sheaves are a compacti-

fication of vector bundles.

4.2.5. Bridgeland stability conditions. Consider the free abelian group

𝐾(𝑌) = {ch(𝐸) ∣ 𝐸 ∈ Perf(𝑌)} ⊂ H2•(𝑌 ;ℚ) . (4.2.5.1)

Define a Bridgeland stability condition on 𝑌 to be a Bridgeland stability condition on Perf(𝑌)
in the sense of §2.4, where we use 𝐾(𝑌) as the group Γ there. We have the spaces

Stab(𝑌) , Stabsd(𝑌)

of Bridgeland stability conditions and self-dual Bridgeland stability conditions on 𝑌 , which
are shorthand notations for Stab𝐾(𝑌)(Perf(𝑌)) and Stabsd𝐾(𝑌)(Perf(𝑌)), respectively.

4.2.6. Permissibility. We discuss a technical condition on Bridgeland stability conditions

which we call permissibility, mainly to ensure that moduli stacks have nice behaviours, es-

pecially for the purpose of wall-crossing. We follow ideas of Piyaratne and Toda [132].

Define subspaces of permissible Bridgeland stability conditions,

Stab∘(𝑌) ⊂ Stab(𝑌) , Stab∘,sd(𝑌) ⊂ Stabsd(𝑌)

as maximal open subsets such that every element 𝜏 = (𝑍, 𝒫 )with𝑍(𝐾(𝑌)) ⊂ ℚ+iℚ satisfies

62



the following conditions:

(i) Support property. For any 𝑟 > 0, there are only finitely many classes 𝛼 ∈ 𝐾(𝑌) admit-

ting a semistable object, such that |𝑍(𝛼)| ⩽ 𝑟 .
(ii) Generic flatness. See Abramovich and Polishchuk [1, Problem 3.5.1], Halpern-Leistner

[65, Definition 6.2.4], or Piyaratne and Toda [132, Definition 4.4] for the formulation.

(iii) Boundedness. For any 𝑡 ∈ ℝ and 𝛼 ∈ 𝐾(𝑌) with 𝑍(𝛼) ∈ ℝ⩾0 ⋅ eπi𝑡 , there is a quasi-

compact open substack𝒳(𝜏; 𝑡)𝛼 ⊂ 𝒫 erf (𝑌) whose ℂ-points are the objects of 𝒫 (𝑡) of
class 𝛼 .

By Piyaratne and Toda [132, Proposition 4.12], if a stability condition 𝜏 satisfies these condi-

tions and has rational central charge, meaning that the central charge is valued inℚ+ iℚ ⊂ ℂ,
then a neighbourhood of 𝜏 lies in Stab∘(𝑌).

For 𝜏 ∈ Stab∘(𝑌) and an interval 𝐽 ⊂ ℝ of length |𝐽 | < 1, there is an open substack

𝒳(𝜏; 𝐽) ⊂ 𝒫 erf (𝑌) (4.2.6.1)

whose ℂ-points are the objects of 𝒫 (𝐽), which we construct in §4.2.8 below. It is a derived

linear stack in the sense of §3.7.2, and 𝜏 defines a permissible stability condition on its classical

truncation in the sense of §3.5, where the Θ-stratification is constructed in §4.2.8 below.

In particular, if 𝜏 ∈ Stab∘,sd(𝑌) and 𝐽 = −𝐽 , then 𝒳(𝜏; 𝐽) is a self-dual derived linear

stack, and the induced stability condition on 𝒳(𝜏; 𝐽) is self-dual. The stack 𝒳(𝜏; 0)sd is the
moduli stack of 𝜏 -semistable self-dual complexes, which our orthosymplectic DT invariants will

count.

4.2.7. Example. Wenowgive examples of permissible self-dual Bridgeland stability conditions

with rational central charge, for certain classes of 𝑌 , so that the spaces Stab∘(𝑌) and Stab∘,sd(𝑌)
are non-empty in these cases.

In the setting of §4.2.2, let 𝑌 be either a curve, a surface, or a threefold satisfying the

conjectural Bogomolov–Gieseker inequality of Bayer, Macrì, and Toda [9, Conjecture 3.2.7].

Fix the data (𝐼 , 𝐿, 𝑠, 𝜀) as in §4.2.2. Let 𝜔 ∈ H1,1(𝑌 ;ℚ) be an ample class with 𝐼 ∗(𝜔) = 𝜔.
Let 𝛽 = 𝑐1(𝐿)/2 ∈ H2(𝑌 ;ℚ). Consider the map 𝑍𝜔 ∶ 𝐾(𝑌) → ℂ given by

𝑍𝜔(𝛼) = i𝑛−𝑠 ⋅ ∫𝑌 exp(−𝛽 − i𝜔) ⋅ 𝛼 (4.2.7.1)
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for 𝛼 ∈ 𝐾(𝑌), where 𝑛 = dim 𝑌 . This is compatible with the self-dual structure, in the sense

that we have 𝑍𝜔(𝔻(𝛼)) = 𝑍𝜔(𝛼) for all 𝛼 ∈ 𝐾(𝑌). Here, our coefficient i𝑛−𝑠 is only inserted

to make 𝑍𝜔 self-dual, and does not essentially affect the stability condition.

There is a Bridgeland stability condition 𝜏𝜔 = (𝑍𝜔 , 𝒫𝜔) ∈ Stab∘(𝑌)with central charge𝑍𝜔 ,

by the works of Toda [147] and Piyaratne and Toda [132]. See also the earlier works of Bridge-

land [23] and Arcara and Bertram [6] in the case of surfaces.

In fact, we can also choose 𝒫𝜔 so that 𝜏𝜔 is self-dual, or equivalently, the slicing 𝒫𝜔 coin-

cides with its dual slicing 𝒫 ∨𝜔 given by

𝒫 ∨𝜔 (𝑡) = 𝔻(𝒫𝜔(−𝑡)) .

This follows from Bayer, Macrì, and Toda [9, Remark 4.4.3], which is essentially the same

statement in the case when 𝑠 = 1, and the general case is constructed from this case by simply

shifting the phase by (1 − 𝑠)/2.

4.2.8. Construction of the moduli stack. We now explain the detailed construction of the

open substack 𝒳(𝜏; 𝐽) ⊂ 𝒫 erf (𝑌) and its Θ-stratification mentioned in §4.2.6, where 𝜏 ∈
Stab∘(𝑌), and 𝐽 ⊂ ℝ is an interval with |𝐽 | < 1,

Applying Piyaratne and Toda [132, Proposition 4.12], we may apply a phase shift and as-

sume that 𝐽 ⊂ ]𝜀, 1 − 𝜀[ for some 𝜀 > 0. Fix 𝛼 ∈ 𝐾(𝑌) of slope within 𝐽 , and then choose

a perturbation 𝜏 ′ = (𝑍 ′, 𝒫 ′) of 𝜏 satisfying the above properties, with 𝑑(𝜏 ′, 𝜏) < 𝜀 and

𝑍 ′(𝐾(𝑌)) ⊂ ℚ + iℚ. Then if 𝛽 ∈ 𝐾(𝑌) is the class of a 𝜏 -Harder–Narasimhan factor of an

object of 𝒫 (𝐽) of class 𝛼 , then 𝑍 ′(𝛽) must lie in the bounded region

{𝑟eπi𝑡 ∣ 𝑟 ⩾ 0, 𝑡 ∈ 𝐽𝜀} ∩ {𝑍 ′(𝛼) − 𝑟eπi𝑡 ∣ 𝑟 ⩾ 0, 𝑡 ∈ 𝐽𝜀} ⊂ ℂ ,

where 𝐽𝜀 is the 𝜀-neighbourhood of 𝐽 , so the set 𝐵 of such classes 𝛽 is finite. We then choose 𝜀
small enough, possibly changing 𝜏 ′, so that for any 𝛽, 𝛽′ ∈ 𝐵, arg𝑍(𝛽) < arg𝑍(𝛽′) im-

plies arg𝑍 ′(𝛽) < arg𝑍 ′(𝛽′), where we take phases within 𝐽𝜀 . Now, Halpern-Leistner [65,
Theorem 6.5.3] gives the open substack 𝒳(𝜏 ′; ]0, 1[) with a Θ-stratification by 𝜏 ′-Harder–
Narasimhan types. The part of 𝒳(𝜏; 𝐽) lying in 𝒳𝛼 can be defined as a finite open union of

strata.

To construct the Θ-stratification on 𝒳(𝜏; 𝐽), we follow the proof of [65, Theorem 6.5.3],
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with the followingmodifications. Instead of using rational weights for Harder–Narasimhan fil-

trations, we use real-weighted filtrations in the sense of [30, §§7.2–7.3]. As a result, we obtain

real-weightedΘ-stratifications, which non-canonically give usualΘ-stratifications by [30, Pro-
position 7.2.12]. The key ingredients of the proof in [65] are the conditions (R), (S), and (B)

there. The rationality condition (R) is no longer needed as we use real weights. The condition

(S) needs to be modified to incorporate real weights, but the argument still works to prove it.

The condition (B) follows from the quasi-compactness of 𝒳(𝜏; 𝐽).
This also shows that any 𝜏 ∈ Stab∘(𝑌) satisfies the support property and the boundedness

property in §4.2.6, where for the support property, fixing 𝑟 > 0 and choosing 𝜏 ′ rational with
𝑑(𝜏 ′, 𝜏) < 𝜀 with 𝜀 < 1/2, for any class 𝛼 with |𝑍(𝛼)| ⩽ 𝑟 admitting a 𝜏 -semistable object 𝐸,
by considering the 𝜏 ′-Harder–Narasimhan filtration of 𝐸, we see that 𝛼 is a finite sum of

classes 𝛽 with |𝑍 ′(𝛽)| < 𝑟e𝜀 admitting 𝜏 ′-semistable objects, and these classes lie on the same

side of a line in ℂ, so there are only finitely many choices.

4.3 Higgs sheaves on varieties

4.3.1. We apply orthosymplectic enumerative geometry to Higgs sheaves on varieties.

A Higgs sheaf on a smooth, projective variety 𝑌 is a coherent sheaf on 𝑌 equipped with a

Higgs field, and can be identified with a compactly supported coherent sheaf on the total space

of the canonical line bundle 𝐾𝑌 of 𝑌 .
When 𝑌 is a curve, there is also the notion of𝐺-Higgs bundles on 𝑌 for a reductive group𝐺,

due to Hitchin [73], which are principal 𝐺-bundles with a Higgs field. Here, we would like to

study such 𝐺-Higgs bundles for 𝐺 = O(𝑛) or Sp(2𝑛).
Moreover, using the approach of orthosymplectic complexes developed in §4.2, in the case

when 𝑌 is a higher-dimensional variety, it is possible to define a version of 𝐺-Higgs sheaves

for 𝐺 = O(𝑛) or Sp(2𝑛), which we call orthosymplectic Higgs complexes on 𝑌 . They can be

described as complexes of Higgs sheaves equipped with self-dual structures, and they admit a

well-behaved moduli stack which we can use to define enumerative invariants. For example,

in the case when 𝑌 is a surface, in §8.4, we will define and study a version of orthosymplectic

Vafa–Witten invariants counting orthosymplectic Higgs complexes on 𝑌 .
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4.3.2. Higgs complexes. Let 𝑌 be a connected, smooth, projective ℂ-variety, and fix the data

(𝐼 , 𝐿, 𝑠, 𝜀) as in §4.2.2 defining a self-dual structure 𝔻 on Perf(𝑌).
For an object 𝐸 ∈ Perf(𝑌), a Higgs field on 𝐸 is a morphism

𝜓 ∶ 𝐸 ⟶ 𝐸 ⊗𝐾𝑌

in Perf(𝑌). We call such a pair (𝐸, 𝜓) a Higgs complex on 𝑌 .
A self-dual Higgs complex is then defined as a fixed point of the involution

(𝐸, 𝜓) ⟼ (𝔻(𝐸), −𝔻(𝜓) ⊗ 𝐾𝑌 )

on the ∞-groupoid of Higgs complexes, where 𝔻(𝜓) ∶ 𝔻(𝐸) ⊗ 𝐾−1𝑌 → 𝔻(𝐸).
More concretely, for a self-dual object (𝐸, 𝜙) ∈ Perf(𝑌)sd with Ext𝑖(𝐸, 𝐸⊗𝐾𝑌 ) = 0 for all

𝑖 < 0, where 𝜙 ∶ 𝐸 ∼→ 𝔻(𝐸), a self-dual Higgs field on (𝐸, 𝜙) is the same data as a Higgs field

𝜓 ∶ 𝐸 → 𝐸⊗𝐾𝑌 such that (𝜙 ⊗𝐾𝑌 ) ∘ 𝜓 = −(𝔻(𝜓)⊗𝐾𝑌 ) ∘ 𝜙 as morphisms 𝐸 → 𝔻(𝐸)⊗𝐾𝑌 .

4.3.3. Moduli stacks. Let 𝒫 erf (𝑌) be the derived moduli stack of perfect complexes on 𝑌 ,
and let

ℋiggs(𝑌) = T∗[−1]𝒫 erf (𝑌) (4.3.3.1)

be the (−1)-shifted cotangent stack of 𝒫 erf (𝑌), equipped with the canonical (−1)-shifted
symplectic structure as in Calaque [35, Theorem 2.4].

The stackℋiggs(𝑌) is a derived moduli stack of Higgs complexes on 𝑌 , since at a ℂ-point
𝐸 ∈ 𝒫 erf (𝑌)(ℂ), we have

𝕃𝒫 erf (𝑌)[−1]|𝐸 ≃ ℝHom𝑆(𝐸, 𝐸)∨[−2] ≃ ℝHom𝑆(𝐸, 𝐸 ⊗ 𝐾𝑆) ,

parametrizing Higgs fields on 𝐸.
The self-dual structure on Perf(𝑌) determines a ℤ2-action on 𝒫 erf (𝑌), which induces

a ℤ2-action on ℋiggs(𝑌). We have ℋiggs(𝑌)sd ≃ T∗[−1]𝒫 erf (𝑌)sd, giving ℋiggs(𝑌)sd a

canonical (−1)-shifted symplectic structure.

We regard ℋiggs(𝑌)sd as a moduli stack of self-dual Higgs complexes on 𝑌 . This descrip-
tion agrees with the definition of a self-dual Higgs field, as the (−1)-shifted tangent map of

the involution 𝔻, as a map ℝHom(𝐸, 𝐸) ∼→ ℝHom(𝔻(𝐸),𝔻(𝐸)), is given by 𝜓 ↦ −𝔻(𝜓).
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4.3.4. Stability conditions. We now restrict to the case when the anti-canonical bundle 𝐾−1𝑌

of 𝑌 is either ample or trivial. This condition is often also referred to as 𝑌 being either Fano

or Calabi–Yau. We abbreviate this condition as 𝐾𝑌 ⩽ 0.
In this case, for any 𝜏 ∈ Stab∘(𝑌) and any 𝐸 ∈ Perf(𝑌), every Higgs field 𝜓 ∶ 𝐸 → 𝐸⊗𝐾𝑌

respects the 𝜏 -Harder–Narasimhan filtration of 𝐸, since choosing a non-zero map 𝜉 ∶ 𝐾𝑌 →
𝒪𝑌 , the composition 𝜉 ∘𝜓 ∶ 𝐸 → 𝐸⊗𝐾𝑌 → 𝐸 must preserve the Harder–Narasimhan filtration.

Therefore, heuristically, a Higgs complex (𝐸, 𝜓) is 𝜏 -semistable if and only if 𝐸 is 𝜏 -semistable.

This justifies the following series of definitions:

Let 𝜏 ∈ Stab∘(𝑌), and let 𝐽 ⊂ ℝ be an interval of length |𝐽 | < 1. Let 𝒳(𝜏; 𝐽) ⊂ 𝒫 erf (𝑌)
be the open substack as in §4.2.6, and define

ℋ(𝜏; 𝐽) = T∗[−1]𝒳(𝜏 ; 𝐽) ⊂ ℋiggs(𝑌) (4.3.4.1)

be the corresponding open substack. The stacks 𝒳(𝜏; 𝐽) and ℋ(𝜏; 𝐽) are derived linear

stacks. When 𝐽 = −𝐽 , they are also self-dual derived linear stacks, and we haveℋ(𝜏; 𝐽)sd ≃
T∗[−1]𝒳(𝜏 ; 𝐽)sd.

Moreover, 𝜏 defines permissible stability conditions on𝒳(𝜏; 𝐽) andℋ(𝜏; 𝐽), in the sense

of §3.5.6. Here, the Θ-stratification on ℋ(𝜏; 𝐽) can be obtained by following the proof of

Halpern-Leistner [65, Theorem 6.5.3], similarly to §4.2.8, where the conditions (S) and (B)

follow from the respective properties of 𝒳(𝜏; 𝐽).
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Chapter 5

Donaldson–Thomas invariants

This chapter presents a main construction of this thesis, that of orthosymplectic Donaldson–

Thomas invariants, which are an orthosymplectic analogue of the theory of Donaldson–

Thomas invariants in the linear case developed by Donaldson and Thomas [53], Thomas [145],

Behrend [10], Joyce [79–83], Joyce and Song [87], and Kontsevich and Soibelman [97]. We ex-

plain in §5.1 some of the basic ideas behind this construction in the linear case.

One of the key technical constructions in this thesis is the generalization of epsilon motives

from the linear case to the orthosymplectic case, which we present in §5.5. These motives

satisfy an important property, the no-pole theorem, Theorem 5.5.5, which allows us to define

Donaldson–Thomas invariants in the orthosymplectic case in §5.6.

5.1 Idea

5.1.1. We start by informally discussing some basic ideas in the usual theory of Donaldson–

Thomas invariants, to motivate some of our technical constructions later on.

Consider a smooth projective Calabi–Yau threefold 𝑌 over ℂ, and let 𝒳 be the moduli

stack of coherent sheaves on 𝑌 . Then𝒳 is a (−1)-shifted symplectic linear stack in the sense

of §3.7.3.

Given a stability condition 𝜏 on 𝒳 , then for each class 𝛼 ∈ π0(𝒳), there is an open

substack 𝒳 ss𝛼 (𝜏) ⊂ 𝒳𝛼 consisting of 𝜏 -semistable sheaves. When 𝛼 ≠ 0, we may form the

𝔾m-rigidification𝒳 ss𝛼 (𝜏)/B𝔾m, which is a modification of𝒳 ss𝛼 (𝜏) where stabilizer groups are
replaced by their quotients by the copy of 𝔾m, corresponding to the scalar automorphisms of
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the sheaves.

If all 𝜏 -semistable sheaves of class 𝛼 are 𝜏 -stable, which implies in particular that they only

have scalar automorphisms, then the rigidification 𝒳 ss𝛼 (𝜏)/B𝔾m is a proper algebraic space,

and admits a (−1)-shifted symplectic structure. In this case, the Donaldson–Thomas invariant

DT𝛼(𝜏) ∈ ℤ is defined as the virtual fundamental class of𝒳 ss𝛼 (𝜏)/B𝔾m in the sense of Behrend

and Fantechi [12], which is a number as the space has virtual dimension zero.

5.1.2. It was observed by Behrend [10, Theorem 4.18] that in this ‘stable= semistable’ case, the

invariant DT𝛼(𝜏) can be written as a weighted Euler characteristic of the space 𝒳 ss𝛼 (𝜏)/B𝔾m,

weighted by a constructible function 𝜈 ∶ 𝒳 ss𝛼 (𝜏)/B𝔾m → ℤ, now called the Behrend function.

This fact may be written as an integral

DT𝛼(𝜏) = ∫
𝒳 ss𝛼 (𝜏)/B𝔾m

𝜈 𝑑𝜒 ,

defined as ∑𝑐∈ℤ 𝑐 ⋅ 𝜒(𝜈−1(𝑐)), where 𝜒(−) denotes the usual Euler characteristic.

5.1.3. Epsilon motives. The aforementioned motivic approach to Donaldson–Thomas the-

ory allowed one to also define Donaldson–Thomas invariants for classes where not all 𝜏 -
semistable sheaves are 𝜏 -stable, as was done by Joyce and Song [87] based on earlier works

of Joyce [79–83], and by Kontsevich and Soibelman [97]. In this case, the above relation is

replaced by an integral of the form

DT𝛼(𝜏) = ∫
𝒳

(1 − 𝕃) ⋅ 𝜖𝛼(𝜏) ⋅ 𝜈𝒳 𝑑𝜒 , (5.1.3.1)

where 𝜖𝛼(𝜏) is the epsilon motive, which is a modification of the motive [𝒳 ss𝛼 (𝜏)] that makes

the integral well-defined (see also §1.2.6), and 𝜈𝒳 is the Behrend function of𝒳 . The factor 1−𝕃
accounts for the fact that we are now integrating over the non-rigidified moduli stack, where

𝕃 − 1 is the motive of 𝔾m, and the sign difference comes from the fact that 𝜈𝒳/B𝔾m = −𝜈𝒳 .

Note that although we have the Euler characteristic 𝜒(𝕃) = 1, the above integral can still

be non-zero, since 𝜖𝛼(𝜏) has a built-in factor of (𝕃 − 1)−1.

5.1.4. Orthosymplectic Donaldson–Thomas invariants. In the orthosymplectic setting, as ex-

plained in §4.2, we no longer use the moduli of coherent sheaves, but we use an alternative
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abelian subcategory 𝒫 (0) ⊂ DbCoh(𝑌) coming from a Bridgeland stability condition, so that

𝒫 (0) is self-dual, and its derived moduli stack of objects 𝒳 is a self-dual (−1)-shifted sym-

plectic linear stack.

In fact, we do not need to restrict ourselves to this concrete example, as the construction

works for general self-dual (−1)-shifted symplectic linear stacks 𝒳 .

For a class 𝜃 ∈ π0(𝒳 sd), we would like to define orthosymplectic Donaldson–Thomas

invariants

DTsd
𝜃 (𝜏) = ∫

𝒳 sd

𝜖sd𝜃 (𝜏) ⋅ 𝜈𝒳 sd 𝑑𝜒 , (5.1.4.1)

analogously to (5.1.3.1), where we no longer need the factor 1 − 𝕃, since points in 𝒳 sd no

longer necessarily have a copy of 𝔾m in their stabilizer groups.

The only remaining difficulty is to define the epsilonmotives 𝜖sd𝜃 (𝜏) in the orthosymplectic

case, so that the integral (5.1.4.1) is well-defined and finite. This will be the main focus of this

chapter, and the no-pole theorem, Theorem 5.5.5, guarantees this desired property.

5.2 Rings of motives

5.2.1. This section provides background material on rings of motives over an algebraic stack.

Roughly speaking, these are rings generated by classes [𝒵] of algebraic stacks 𝒵 defined

over 𝒳 , up to the cut-and-paste relations

[𝒵] = [𝒵 ′] + [𝒵 ∖𝒵 ′] (5.2.1.1)

for closed substacks𝒵 ′ ⊂ 𝒵 . The class [𝒵] is called themotive of𝒵 . In the context of stacks,

these rings were originally considered by Joyce [82] under the name of stack functions.

For technical reasons, we will define multiple versions of rings of motives, which can be

roughly arranged into the diagram below:

𝕄(𝒳)

𝕄s(𝒳) 𝕄̂(𝒳)

𝕄̂∘(𝒳) CF(𝒳) .

∪




∪

𝜒

(5.2.1.2)
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Here, 𝕄(𝒳) is the default version, 𝕄s(𝒳) is the schematic version, 𝕄̂(𝒳) is the completed

version, and 𝕄̂∘(𝒳) is the subspace of regular motives. The middle horizontal map is a loc-

alization, the diagonal map is like a retract of the inclusion 𝕄s(𝒳) ↪ 𝕄(𝒳) up to this loc-

alization, and 𝜒 is the Euler characteristic map, valued in constructible functions on 𝒳 . As

mentioned in §1.2.6, one cannot expect to define the Euler characteristic for all stacks, so it is

not defined on the full space 𝕄̂(𝒳).
Recall from §3.2.2 our running assumptions on algebraic stacks, which we will assume all

stacks in this section to satisfy.

5.2.2. The ring of motives. Let 𝐾 be a field, let 𝒳 be an algebraic stack over 𝐾 satisfying

assumptions in §3.2.2, and let 𝐴 be a commutative ring.

The ring of motives over 𝒳 with coefficients in 𝐴 is the 𝐴-module

𝕄(𝒳;𝐴) = ⨁̂
𝒵→𝒳

𝐴 ⋅ [𝒵]/∼ , (5.2.2.1)

where we run through isomorphism classes of representable morphisms 𝒵 → 𝒳 of finite

type, with 𝒵 quasi-compact, and ⊕̂ indicates that we take the set of locally finite sums, that

is, possibly infinite sums ∑𝒵→𝒳 𝑎𝒵 ⋅ [𝒵], such that for each quasi-compact open substack

𝒰 ⊂ 𝒳 , there are only finitely many 𝒵 such that 𝑎𝒵 ≠ 0 and 𝒵 ×𝒳 𝒰 ≠ ∅. The relation ∼
is generated by locally finite sums of elements of the form

𝑎 ⋅ ([𝒵] − [𝒵 ′] − [𝒵 ∖𝒵 ′]) ,

where 𝑎 ∈ 𝐴, 𝒵 is as above, and 𝒵 ′ ⊂ 𝒵 is a closed substack. The class [𝒵] ∈ 𝕄(𝒳;𝐴) is
called the motive of𝒵 .

In fact, 𝕄(𝒳;𝐴) carries a natural topology which is the limit topology of the discrete

topologies on𝕄(𝒰;𝐴) for quasi-compact open substacks𝒰 ⊂ 𝒳 . The locally finite sums are

precisely the sums that converge in this topology.

For a representable morphism 𝒵 → 𝒳 of finite type, where 𝒵 is not necessarily quasi-

compact, we can still define its motive [𝒵] ∈ 𝕄(𝒳;𝐴), by stratifying𝒵 into quasi-compact

locally closed substacks, 𝒵 = ⋃𝑖∈𝐼 𝒵𝑖, and defining [𝒵] = ∑𝑖∈𝐼 [𝒵𝑖] as a locally finite sum.

It is easy to check that this does not depend on the choice of stratification.

The ring structure on 𝕄(𝒳;𝐴) is given by [𝒵] ⋅ [𝒵 ′] = [𝒵 ×𝒳 𝒵 ′] on generators, with
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unit element [𝒳] defined using the procedure of the previous paragraph.

We also write 𝕄(𝒳) for 𝕄(𝒳;ℤ), and 𝕄(𝐾;𝐴) for𝕄(Spec(𝐾);𝐴).
The ring𝕄(𝒳;𝐴) is naturally an𝕄(𝐾;𝐴)-algebra, with the action given by the product.

In particular, it is an 𝐴[𝕃]-algebra, where

𝕃 = [𝔸1] ∈ 𝕄(𝐾;𝐴) (5.2.2.2)

is the class of the affine line over 𝐾 .

5.2.3. Properties. We list some basic properties of rings of motives.

(i) For a morphism 𝑓 ∶ 𝒴 → 𝒳 , there is a pullback map

𝑓 ∗ ∶ 𝕄(𝒳;𝐴) ⟶ 𝕄(𝒴;𝐴) ,

given by [𝒵] ↦ [𝒵 ×𝒳 𝒴] on generators, which is a ring homomorphism.

(ii) For a representable quasi-compact morphism 𝑓 ∶ 𝒴 → 𝒳 , there is a pushforward map

𝑓! ∶ 𝕄(𝒴;𝐴) ⟶ 𝕄(𝒳;𝐴) ,

given by [𝒵] ↦ [𝒵] on generators. This is not a ring homomorphism in general.

(iii) For stacks 𝒳 and𝒴 , there is an external product

⊠∶ 𝕄(𝒳;𝐴) ⊗𝕄(𝒴;𝐴) ⟶ 𝕄(𝒳 ×𝒴;𝐴) ,

given by [𝒵]⊗[𝒵 ′] ↦ [𝒵 ×𝒵 ′] on generators. The multiplication on𝕄(𝒳;𝐴) can be
realized as the external product for 𝒳 ×𝒳 followed by pulling back along the diagonal

Δ∶ 𝒳 → 𝒳 ×𝒳 .

(iv) For a representable quasi-compact morphism 𝑓 ∶ 𝒴 → 𝒳 , we have the projection for-

mula

𝑓!(𝑎 ⋅ 𝑓 ∗(𝑏)) = 𝑓!(𝑎) ⋅ 𝑏 (5.2.3.1)

for 𝑎 ∈ 𝕄(𝒴;𝐴) and 𝑏 ∈ 𝕄(𝒳;𝐴), which can be verified on generators.

(v) For a pullback diagram

𝒴 ′ 𝒴

𝒳 ′ 𝒳 ,

𝑔′

𝑓 ′ ⌜

 𝑓
𝑔
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where 𝑓 is representable and quasi-compact, we have the base change formula

𝑔∗ ∘ 𝑓! = 𝑓 ′! ∘ (𝑔′)∗ ∶ 𝕄(𝒴;𝐴) ⟶ 𝕄(𝒳 ′; 𝐴) . (5.2.3.2)

Again, this can be verified directly on generators.

5.2.4. Schematic motives. Let 𝒳 and 𝐴 be as above. Define the 𝐴-submodule

𝕄s(𝒳;𝐴) ⊂ 𝕄(𝒳;𝐴)

of schematic motives to be the smallest closed submodule containing the motives [𝑍] for

morphisms 𝑍 → 𝒳 from a 𝐾 -scheme 𝑍 of finite type. Here, being a closed submodule is

equivalent to being closed under taking locally finite sums in the sense of §5.2.2.

For a morphism 𝑍 → 𝒳 of finite type from an algebraic space 𝑍 locally of finite type

over 𝐾 , we can still define its motive [𝑍] ∈ 𝕄s(𝒳;𝐴) using a stratification, similarly to

§5.2.2.

Note that we have 𝕄s(𝒳;𝐴) = 𝕄(𝒳;𝐴) if and only if 𝒳 is an algebraic space. Also,

𝕄s(𝒳;𝐴) is closed under multiplication in 𝕄(𝒳;𝐴), but it does not contain the unit [𝒳]
when 𝒳 is not an algebraic space. We also write 𝕄s(𝒳) for 𝕄s(𝒳;ℤ).

5.2.5. Completed motives. Consider the localization

𝕄̂(𝒳;𝐴) = 𝕄s(𝒳;𝐴) ⊗̂
𝐴[𝕃]

𝐴[𝕃±1, (𝕃𝑘 − 1)−1 ∶ 𝑘 > 0] , (5.2.5.1)

where 𝕃 = [𝔸1] is the motive of the affine line, and ⊗̂ denotes the completed tensor product

with respect to locally finite sums. We call this the completed ring of motives over 𝒳 .

A key property of completed motives is that for a morphism 𝒵 → 𝒳 of finite type, not

necessarily representable, we have a class

[𝒵] ∈ 𝕄̂(𝒳;𝐴) (5.2.5.2)

defined as follows. By Kresch [99, Proposition 3.5.9], we may stratify ℤ into locally closed

substacks of the form (𝒵𝑖 = 𝑈𝑖/𝐺𝑖)𝑖∈𝐼 , with 𝑈𝑖 a quasi-projective 𝐾 -scheme acted on by a

group 𝐺𝑖 = GL(𝑛𝑖) for some 𝑛𝑖 ∈ ℕ. We then define

[𝒵] ⟼ ∑
𝑖∈𝐼

[𝐺𝑖]−1 ⋅ [𝑈𝑖] , (5.2.5.3)
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where [𝐺𝑖]−1 ∈ 𝔸[𝕃−1, (𝕃𝑘 − 1)−1]. To see that this is well-defined, it is enough to check that

this does not depend on the choice of stratification, and by choosing common refinements of

two given stratifications, we are reduced to the following fact: If 𝑈1/𝐺1 ≃ 𝑈2/𝐺2 ≃ 𝒰 , then

[𝐺1] ⋅ [𝑈2] = [𝐺2] ⋅ [𝑈1], where 𝐺𝑖 = GL(𝑛𝑖) for 𝑖 = 1, 2. To see this, set 𝑈 = 𝑈1 ×𝒰 𝑈2. Then

𝑈 → 𝑈2 is a 𝐺1-bundle, and since every principal GL(𝑛1)-bundle is Zariski locally trivial, a

further stratification of 𝑈2 shows that [𝑈 ] = [𝐺1] ⋅ [𝑈2], and similarly, [𝑈 ] = [𝐺2] ⋅ [𝑈1].
Note that here, we have used a special property of the groups GL(𝑛) that every principal

bundle over a scheme is Zariski locally trivial. This property is called being a special group in

Serre [138].

In particular, there is a natural map

𝕄(𝒳;𝐴) ⟶ 𝕄̂(𝒳;𝐴) , (5.2.5.4)

given on generators by [𝒵] ↦ [𝒵] defined as above.

5.2.6. Properties. We collect here some properties of the rings 𝕄̂(𝒳;𝐴).
Firstly, all properties in §5.2.3 hold analogously for 𝕄̂(𝒳;𝐴). Moreover, we are also al-

lowed to push forward along quasi-compact but possibly non-representable morphisms, using

the classes [𝒵] defined in §5.2.5.

In particular, if 𝒳 is quasi-compact, there is a motivic integration map

∫𝒳 (−) ∶ 𝕄(𝒳;𝐴) ⟶ 𝕄̂(𝐾;𝐴) ,

defined as the map (5.2.5.4) followed by pushing forward along the possibly non-representable

morphism 𝒳 → Spec(𝐾).
Another useful property is that for a class [𝒵] ∈ 𝕄̂(𝒳;𝐴) as in §5.2.5, a vector bundle

ℰ → 𝒵 of rank 𝑛, and a principal 𝐺-bundle 𝒫 → 𝒵 for a special group 𝐺 in the sense of

Serre [138], such as 𝐺 = GL(𝑛) for some 𝑛 ∈ ℕ, we have the relations

[ℰ] = 𝕃𝑛 ⋅ [𝒵] , (5.2.6.1)

[𝒫 ] = [𝐺] ⋅ [𝒵] . (5.2.6.2)

These can be verified using the fact that any vector bundle or principal 𝐺-bundle on a scheme

is Zariski locally trivial, where the latter property is by the definition of special groups.
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5.2.7. Constructible functions. For a stack 𝒳 as above, and a commutative ring 𝐴, a con-

structible function on 𝒳 is a map of sets

𝑎 ∶ |𝒳 | ⟶ 𝐴 ,

where |𝒳 | is the underlying topological space of 𝒳 as in §3.1.4, such that for any 𝑐 ∈ 𝐴,

the preimage 𝑎−1(𝑐) is a locally constructible subset of |𝒳 |. The 𝐴-algebra of constructible

functions on 𝒳 is denoted by CF(𝒳;𝐴).

5.2.8. Euler characteristics. Define the subspace

𝕄̂∘(𝒳;𝐴) ⊂ 𝕄̂(𝒳;𝐴) (5.2.8.1)

of regular motives as the image of the map

𝕄(𝒳;𝐴) ⊗̂
𝐴[𝕃]

𝐴[𝕃±1, (1 + 𝕃 +⋯ + 𝕃𝑘)−1 ∶ 𝑘 > 0] ⟶ 𝕄̂(𝒳;𝐴) (5.2.8.2)

naturally extending the map (5.2.5.4).

Roughly speaking, this is the subspace of motives that ‘have no poles at 𝕃 = 1’, so that

taking the Euler characteristic, which sets 𝕃 = 1, is a valid operation on this subspace.

When 𝐴 contains ℚ, define the Euler characteristic map

𝜒 ∶ 𝕄̂∘(𝒳;𝐴) ⟶ CF(𝒳;𝐴) ,

as follows. For a generator 𝑎 = 𝑓 (𝕃)⋅[𝒵] ∈ 𝕄̂∘(𝒳;𝐴), where [𝒵] is a generator of𝕄(𝒳;𝐴)
as in §5.2.2, and 𝑓 (𝕃) is a rational function in 𝕃 regular at 𝕃 = 1, define

𝜒(𝑎)(𝑥) = 𝑓 (1) ⋅∑
𝑖⩾0

(−1)𝑖 ⋅ dimH𝑖
c(𝑍 ̄𝑥 ; ℚℓ)

to be the alternating sum of the dimensions of the compactly supported ℓ-adic cohomology

groups of the base change of 𝒵 to the geometric point ̄𝑥 ∶ 𝐾̄𝑥 → 𝒳 of 𝑥 , where 𝐾̄𝑥 is the

algebraic closure of the residue field 𝐾𝑥 of 𝑥 , and ℓ is a prime number different from char(𝐾).
This integer is independent of the choice of ℓ, as in Illusie [76, §1.1].

5.2.9. The virtual rank decomposition. Let𝒳 be a stack over 𝐾 , and let𝐴 be a commutative

ℚ-algebra. As in Joyce [82, §5] and the author, Ibáñez Núñez, and Kinjo [31, §5.1], there is a
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virtual rank decomposition

𝕄(𝒳;𝐴) = ⨁̂
𝑘⩾0

𝕄(𝑘)(𝒳;𝐴) ,

where ⊕̂ means allowing locally finite sums as in §5.2.2, and each𝕄(𝑘)(𝒳;𝐴) ⊂ 𝕄(𝒳;𝐴) is
the submodule of motives of pure virtual rank 𝑘.

Roughly speaking, having virtual rank⩽ 𝑘 means having a pole of order at most 𝑘 at 𝕃 = 1
after motivic integration (see §5.2.6).

Precisely, this decomposition is defined by the projection operators

𝜋 (𝑘) ∶ 𝕄(𝒳;𝐴) ⟶ 𝕄(𝒳;𝐴) , (5.2.9.1)

which are 𝕄(𝐾;𝐴)-linear maps that are continuous (that is, preserving locally finite sums),

characterized by the following properties:

(i) For any 𝑎 ∈ 𝕄(𝒳;𝐴), we have 𝑎 = ∑𝑘⩾0 𝜋 (𝑘)(𝑎) as a locally finite sum.

(ii) For a generator [𝑈/𝐺] ∈ 𝕄(𝒳;𝐴), where 𝑈 is a quasi-projective 𝐾 -scheme, acted

on by a smooth affine algebraic group 𝐺 over 𝐾 with a split maximal torus, such as

𝐺 = GL(𝑛), equipped with a representable morphism 𝑈/𝐺 → 𝒳 , we have

[𝑈/𝐺] = ∑
𝑘⩾0; 𝑇⊂𝐺

1
|𝑊𝑇 |

⋅ 𝜋 (𝑘)([𝑈 𝑇/𝐿𝑇 ]) , (5.2.9.2)

where we sum over conjugacy classes of split tori 𝑇 ≃ 𝔾𝑘
m ⊂ 𝐺 of dimension 𝑘, 𝑊𝑇 =

N𝐺(𝑇)/Z𝐺(𝑇) is the relative Weyl group, 𝑈 𝑇 ⊂ 𝑈 is the fixed locus, 𝐿𝑇 = Z𝐺(𝑇) ⊂ 𝐺
is the Levi subgroup given by 𝑇 , and the sum only has finitely many non-zero terms.

(iii) For a generator [𝑈/𝐺] ∈ 𝕄(𝒳;𝐴) as above, if there exists a subtorus 𝔾𝑘
m ⊂ Z(𝐺)

acting on 𝑈 trivially, then 𝜋 (𝑘′)([𝑈/𝐺]) = 0 for all 0 ⩽ 𝑘′ < 𝑘.

The image of 𝜋 (𝑘) is then defined as 𝕄(𝑘)(𝒳;𝐴). See [31, §5.1] for details.
Note that this definition uses almost no information about 𝒳 , and as a consequence, the

decomposition §5.2.9 is compatible with pushforwards of motives.

The reader should be warned that this decomposition does not descend to 𝕄̂(𝒳;𝐴), since
for example, when 𝒳 = ∗/𝔾m, the motives [𝔾m × (∗/𝔾m)] (with the natural projection to

∗/𝔾m) and [∗] (with the unique morphism to ∗/𝔾m) get identified in 𝕄̂(𝒳;𝐴), whereas they
have pure virtual ranks 1 and 0, respectively.
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When 𝒳 is quasi-compact, the motivic integration map satisfies the property that

∫𝒳 (−) ∶ 𝕄(⩽𝑘)(𝒳;𝐴) ⟶ (𝕃 − 1)−𝑘 ⋅ 𝕄̂∘(𝐾;𝐴) ⊂ 𝕄̂(𝐾;𝐴) , (5.2.9.3)

that is, the image of the space 𝕄(⩽𝑘) = 𝕄(0) ⊕ ⋯ ⊕ 𝕄(𝑘) lies in the subspace (𝕃 − 1)−𝑘 ⋅
𝕄̂∘(𝐾;𝐴). In particular, there is an Euler characteristic integration map

∫𝒳 (𝕃 − 1)𝑘 ⋅ (−) 𝑑𝜒 = 𝜒 ∘∫𝒳 (𝕃 − 1)𝑘 ⋅ (−) ∶ 𝕄(⩽𝑘)(𝒳;𝐴) ⟶ 𝐴 . (5.2.9.4)

5.3 Descent of motives

5.3.1. Wenow discuss descent properties of the rings of motives defined above. These rings do

not satisfy étale descent, since for example, pulling back along the double cover (−)2 ∶ 𝔾m →
𝔾m identifies the class of the trivial double cover 𝔾m × μ2 → 𝔾m and the non-trivial double

cover 𝔾m → 𝔾m.

However, we show in Theorem 5.3.3 below that the ring of motives 𝕄̂(−) does satisfy

descent under the Nisnevich topology.

5.3.2. The Nisnevich topology. Recall that for an algebraic space 𝑋 , a Nisnevich cover of 𝑋
is a family of étale morphisms (𝑓𝑖 ∶ 𝑋𝑖 → 𝑋)𝑖∈𝐼 , such that for each point 𝑥 ∈ 𝑋 , there exists

𝑖 ∈ 𝐼 and a point 𝑥′ ∈ 𝑋𝑖, such that 𝑓𝑖(𝑥′) = 𝑥 , and 𝑓𝑖 induces an isomorphism on residue

fields at 𝑥′ and 𝑥 .
Let 𝒳 be an algebraic stack. Define a Nisnevich cover of 𝒳 to be a representable étale

cover (𝑓𝑖 ∶ 𝒳𝑖 → 𝒳)𝑖∈𝐼 such that its base change to any algebraic space is a Nisnevich cover

of algebraic spaces. See also Choudhury, Deshmukh, and Hogadi [38, Definition 1.2 ff.].

For example, for an integer 𝑛 > 1, the morphism ∗ → ∗/μ𝑛 is not a Nisnevich cover, since

its base change 𝔾m → 𝔾m, 𝑡 ↦ 𝑡𝑛 is not a Nisnevich cover.

Algebraic spaces over 𝐾 that are locally of finite type admit Nisnevich covers by affine

𝐾 -schemes, which can be deduced from Knutson [95, II, Theorem 6.4].

5.3.3. Theorem. Let𝒳 be a stack as above, and let (𝑓𝑖 ∶ 𝒳𝑖 → 𝒳)𝑖∈𝐼 be a Nisnevich cover. Then
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the map

(𝑓 ∗𝑖 )𝑖∈𝐼 ∶ 𝕄̂(𝒳) ⟶ eq(∏
𝑖∈𝐼

𝕄̂(𝒳𝑖) ⟶⟶ ∏
𝑖,𝑗∈𝐼

𝕄̂(𝒳𝑖 ×𝒳 𝒳𝑗))

is an isomorphism, where the right-hand side is the equalizer of the two maps induced by pulling

back along projections from each 𝒳𝑖 ×𝒳 𝒳𝑗 to 𝒳𝑖 and 𝒳𝑗 , respectively.

Proof. We first consider the case when 𝒳 is an algebraic space. In this case, one can stratify

𝒳 into locally closed subspaces 𝑆𝑘 ⊂ 𝒳 , such that the map ∐𝑖𝒳𝑖 → 𝒳 admits a section 𝑠𝑘
over each 𝑆𝑘 . After a base change to each 𝑆𝑘 , we can assume that∐𝑖𝒳𝑖 → 𝒳 admits a global

section, in which case the result is clear.

For the general case, by Kresch [99, Proposition 3.5.9], 𝒳 can be stratified by quotient

stacks of the form 𝑈/𝐺, where 𝑈 is a quasi-projective 𝐾 -scheme acted on by 𝐺 ≃ GL(𝑛)
for some 𝑛. Therefore, we may assume that 𝒳 = 𝑈/𝐺 is of this form. Let 𝜋 ∶ 𝑈 → 𝑈/𝐺
be the projection. Then for all 𝑎 ∈ 𝕄̂(𝑈/𝐺), we have 𝑎 = [𝐺]−1 ⋅ 𝜋! ∘ 𝜋∗(𝑎), so that 𝜋∗

is injective. Its image consists of elements 𝑎̃ ∈ 𝕄̂(𝑈 ) such that 𝜋∗ ∘ 𝜋!(𝑎̃) = [𝐺] ⋅ 𝑎̃. We

call such elements 𝐺-invariant. In other words, we may identify 𝕄̂(𝑈/𝐺) with the subring

of 𝕄̂(𝑈 ) consisting of 𝐺-invariant elements. Writing 𝑈𝑖 = 𝑈 ×𝒳 𝒳𝑖, it suffices to show that

𝕄̂(𝑈 ) ∼→ eq(∏𝑖∈𝐼 𝕄̂(𝑈𝑖) ⇉ ∏𝑖,𝑗∈𝐼 𝕄̂(𝑈𝑖 ×𝑈 𝑈𝑗)), since taking 𝐺-invariant elements on both

sides gives the desired result. We are now reduced to the already known case of algebraic

spaces.

5.4 Motivic Hall algebras and modules

5.4.1. We introduce themotivic Hall algebra for a linear stack, originally defined by Joyce [80],

which is an associative algebra structure on the ring of motives𝕄(𝒳).
For self-dual linear stacks, we show that the ring of motives 𝕄(𝒳 sd) is a module for the

motivic Hall algebra 𝕄(𝒳), which we call the motivic Hall module.

Hall modules have been constructed and studied for other flavours of Hall algebras, such

as by Young [157–159] in the context of Ringel’s [134; 135] Hall algebras and that of cohomo-

logical Hall algebras. A similar construction in the context of Joyce’s [85; 86] vertex algebras

is obtained by the author [26]. Another closely related work is DeHority and Latyntsev [45],
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who studied the relation between the cohomological version and the vertex algebra version.

5.4.2. Themotivic Hall algebra. Let𝒳 be a linear stack over𝐾 , with quasi-compact filtrations

as in §3.3.4. Define an operation

∗ ∶ 𝕄(𝒳) ⊗𝕄(𝒳) ⟶ 𝕄(𝒳)

by the composition

𝕄(𝒳) ⊗𝕄(𝒳) ⊠⟶ 𝕄(𝒳 ×𝒳) gr∗⟶ 𝕄(𝒳+) ev!⟶ 𝕄(𝒳) ,

where 𝒳+ denotes the disjoint union of the stacks of filtrations 𝒳+𝛼1,𝛼2 for all 𝛼1, 𝛼2 ∈ π0(𝒳).
Roughly speaking, for motives 𝑎, 𝑏 ∈ 𝕄(𝒳), the product 𝑎 ∗ 𝑏 ∈ 𝕄(𝒳) parametrizes all

possible extensions of objects parametrized by 𝑎 and 𝑏, respectively.
We will see in Theorem 5.4.4 that the product ∗ is associative, and that it has a unit ele-

ment [{0}] ∈ 𝕄(𝒳), which is the motive of the component {0} ⊂ 𝒳 . This defines an associ-

ative algebra structure on𝕄(𝒳), called the motivic Hall algebra of 𝒳 .

5.4.3. The motivic Hall module. Now, let 𝒳 be a self-dual linear stack over 𝐾 , with quasi-

compact filtrations as in §3.3.4. Define an operation

⋄∶ 𝕄(𝒳) ⊗𝕄(𝒳 sd) ⟶ 𝕄(𝒳 sd)

by the composition

𝕄(𝒳) ⊗𝕄(𝒳 sd) ⊠⟶ 𝕄(𝒳 ×𝒳 sd) gr∗⟶ 𝕄(𝒳 sd,+) ev!⟶ 𝕄(𝒳 sd) ,

where𝒳 sd,+ denotes the disjoint union of the stacks of filtrations𝒳+
𝛼,𝜃 for all 𝛼 ∈ π0(𝒳) and

𝜃 ∈ π0(𝒳 sd).
Again, roughly speaking, for motives 𝑎 ∈ 𝕄(𝒳) and 𝑏 ∈ 𝕄(𝒳 sd), the product 𝑎 ⋄ 𝑏 ∈

𝕄(𝒳 sd) parametrizes the total objects of all possible three-step self-dual filtrations, as in §2.2.4,

whose graded pieces are parametrized by 𝑎, 𝑏, and 𝑎∨, respectively,
We will prove in Theorem 5.4.4 that the product ⋄ establishes𝕄(𝒳 sd) as a left module for

the motivic Hall algebra𝕄(𝒳). This is called the motivic Hall module of 𝒳 .

5.4.4. Theorem. Let 𝒳 be a linear stack over 𝐾 , with quasi-compact filtrations.
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(i) Recall the operation ∗ defined in §5.4.2. Then for any 𝑎, 𝑏, 𝑐 ∈ 𝕄(𝒳), we have

[{0}] ∗ 𝑎 = 𝑎 = 𝑎 ∗ [{0}] , (5.4.4.1)

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) , (5.4.4.2)

where [{0}] ∈ 𝕄(𝒳) is the motive of the component {0} ⊂ 𝒳 .

(ii) Suppose that 𝒳 is equipped with a self-dual structure. Consider the involution (−)∨

on 𝕄(𝒳) induced by the involution of 𝒳 , and the operation ⋄ defined in §5.4.3. Then

for any 𝑎, 𝑏 ∈ 𝕄(𝒳) and 𝑐 ∈ 𝕄(𝒳 sd), we have

𝑎∨ ∗ 𝑏∨ = (𝑏 ∗ 𝑎)∨ , (5.4.4.3)

[{0}] ⋄ 𝑐 = 𝑐 , (5.4.4.4)

𝑎 ⋄ (𝑏 ⋄ 𝑐) = (𝑎 ∗ 𝑏) ⋄ 𝑐 . (5.4.4.5)

Proof. For (5.4.4.1), it is enough to show that for any 𝛼 ∈ π0(𝒳), the morphisms𝒳+0,𝛼 → 𝒳𝛼

and 𝒳+𝛼,0 → 𝒳𝛼 are isomorphisms, which follows from the descriptions in §3.3.4.

For (5.4.4.2), we may assume that 𝑎 ∈ 𝕄(𝒳𝛼1), 𝑏 ∈ 𝕄(𝒳𝛼2), and 𝑐 ∈ 𝕄(𝒳𝛼3), for some

𝛼1, 𝛼2, 𝛼3 ∈ π0(𝒳). Applying the base change formula (5.2.3.2) to the pullback squares in the

diagrams
𝒳+𝛼1,𝛼2,𝛼3

𝒳+𝛼1,𝛼2 × 𝒳𝛼3 𝒳+𝛼1+𝛼2,𝛼3

𝒳𝛼1×𝒳𝛼2×𝒳𝛼3 𝒳𝛼1+𝛼2×𝒳𝛼3 𝒳𝛼1+𝛼2+𝛼3 ,

 ⌜

   

𝒳+𝛼1,𝛼2,𝛼3

𝒳𝛼1 × 𝒳+𝛼2,𝛼3 𝒳+𝛼1,𝛼2+𝛼3

𝒳𝛼1×𝒳𝛼2×𝒳𝛼3 𝒳𝛼1×𝒳𝛼2+𝛼3 𝒳𝛼1+𝛼2+𝛼3 ,

 ⌜

   
(5.4.4.6)

we see that both sides of (5.4.4.2) are equal to ev! ∘gr∗(𝑎⊠𝑏⊠𝑐), where gr and ev are the outer
compositions in both diagrams in (5.4.4.6). These diagrams are special cases of the associativity

theorem of the author et al. [30, §6.3], as explained in [30, §7.1.7].

The relation (5.4.4.3) follows from the commutativity of the diagram

𝒳𝛼1 × 𝒳𝛼2 𝒳+𝛼1,𝛼2 𝒳𝛼1+𝛼2

𝒳𝛼∨2 × 𝒳𝛼∨1 𝒳+
𝛼∨2 ,𝛼∨1 𝒳𝛼∨2 +𝛼∨1 ,

(−)∨ ≃ (−)∨ ≃

 gr ev

(−)∨ ≃

 gr ev

(5.4.4.7)

where 𝛼1, 𝛼2 ∈ π0(𝒳), and the middle vertical isomorphism is given by the ℤ2-action on

80



ℱilt(𝒳).
The relation (5.4.4.4) follows from the isomorphism 𝒳 sd,+

0,𝜃 ∼→ 𝒳 sd
𝜃 for 𝜃 ∈ π0(𝒳 sd).

For (5.4.4.5), we have similar diagrams

𝒳 sd,+
𝛼1,𝛼2,𝜃

𝒳+𝛼1,𝛼2 × 𝒳 sd
𝜃 𝒳 sd,+

𝛼1+𝛼2,𝜃

𝒳𝛼1×𝒳𝛼2×𝒳 sd
𝜃 𝒳𝛼1+𝛼2×𝒳 sd

𝜃 𝒳 sd,+
𝛼1+𝛼2+𝜃+𝛼∨2 +𝛼∨1 ,

 ⌜

   

𝒳 sd,+
𝛼1,𝛼2,𝜃

𝒳𝛼1 × 𝒳 sd,+
𝛼2,𝜃 𝒳 sd,+

𝛼1,𝛼2+𝜃+𝛼∨2

𝒳𝛼1×𝒳𝛼2×𝒳 sd
𝜃 𝒳𝛼1×𝒳 sd

𝛼2+𝜃+𝛼∨2 𝒳 sd,+
𝛼1+𝛼2+𝜃+𝛼∨2 +𝛼∨1 ,

 ⌜

   

(5.4.4.8)

where the pullback squares follow from the associativity theorem of the author et al. [30, §6.3].

Alternatively, these diagrams can be obtained by taking ℤ2-fixed loci in pullback diagrams

analogous to (5.4.4.6) for 5-step filtrations. The relation (5.4.4.5) then follows from applying

the base change formula (5.2.3.2) to these diagrams.

5.5 Epsilon motives

5.5.1. We define epsilon motives for linear and self-dual linear stacks, following Joyce [83] in

the linear case and the construction of the author, Ibáñez Núñez, and Kinjo [31] for general

algebraic stacks. These are elements of the rings of motives𝕄(𝒳;ℚ) and𝕄(𝒳 sd; ℚ), depend-
ing on a stability condition 𝜏 , and are obtained from motives of semistable loci, [𝒳 ss𝛼 (𝜏)] and
[𝒳 sd,ss

𝜃 (𝜏)], by removing certain parts of the strictly semistable locus. The purpose of doing

this step is so that the no-pole theorem, Theorem 5.5.5, holds, allowing us to take the Euler

characteristics of epsilon motives, which will then be used to define Donaldson–Thomas in-

variants.

Throughout, we assume that 𝒳 is a linear stack over 𝐾 , with quasi-compact filtrations as

in §3.3.4.

5.5.2. The linear case. Let 𝜏 be a permissible stability condition on 𝒳 . Following Joyce [83],

for each class 𝛼 ∈ π0(𝒳) ∖ {0}, define the epsilon motive 𝜖𝛼(𝜏) ∈ 𝕄(𝒳𝛼 ; ℚ) by the formula

𝜖𝛼(𝜏) = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛)

(−1)𝑛−1
𝑛 ⋅ [𝒳 ss𝛼1(𝜏)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏)] , (5.5.2.1)
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where ∗ denotes multiplication in the motivic Hall algebra 𝕄(𝒳;ℚ). By Lemma 3.5.8, only

finitely many terms in the sum are non-zero. Note that 𝜖𝛼(𝜏) is supported on 𝒳 ss𝛼 (𝜏).
Formally inverting the formula (5.5.2.1), we obtain the relation

[𝒳 ss𝛼 (𝜏)] = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛)

1
𝑛! ⋅ 𝜖𝛼1(𝜏) ∗ ⋯ ∗ 𝜖𝛼𝑛(𝜏) . (5.5.2.2)

The relation between the coefficients (−1)𝑛−1/𝑛 and 1/𝑛! are explained in §5.5.4 below.

One can also combine (5.5.2.2) with the relation

[𝒳𝛼] = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,𝜏(𝛼1) > ⋯ > 𝜏(𝛼𝑛)

[𝒳 ss𝛼1(𝜏)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏)] , (5.5.2.3)

which comes from theΘ-stratification of𝒳 , and can be an infinite but locally finite sum, giving

the formula

[𝒳𝛼] = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,𝜏(𝛼1) ⩾ ⋯ ⩾ 𝜏(𝛼𝑛)

1
|𝑊𝛼1,…,𝛼𝑛(𝜏)|

⋅ 𝜖𝛼1(𝜏) ∗ ⋯ ∗ 𝜖𝛼𝑛(𝜏) , (5.5.2.4)

where 𝑊𝛼1,…,𝛼𝑛(𝜏) denotes the group of permutations 𝜎 of {1,… , 𝑛} such that 𝜏(𝛼𝜎(1)) ⩾
⋯ ⩾ 𝜏(𝛼𝜎(𝑛)). This can be taken as an alternative definition of the invariants 𝜖𝛼(𝜏), that is,
they are the unique set of motives such that (5.5.2.4) holds for all 𝛼 .

One can interpret (5.5.2.4) as considering a generalized version of HN filtrations, where

the slopes of the quotients are non-increasing rather than strictly decreasing, and the sum is

averaged over all possible orderings satisfying the non-increasing condition.

5.5.3. The self-dual case. Suppose that 𝒳 is equipped with a self-dual structure, and let 𝜏 be

a permissible self-dual stability condition on 𝒳 .

For each class 𝜃 ∈ π0(𝒳 sd), define the epsilon motive 𝜖sd𝜃 (𝜏) ∈ 𝕄(𝒳 sd
𝜃 ; ℚ) by the formula

𝜖sd𝜃 (𝜏) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛) = 0

(−1/2𝑛 ) ⋅ [𝒳 ss𝛼1(𝜏)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏)] ⋄ [𝒳 sd,ss𝜌 (𝜏)] , (5.5.3.1)
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where ⋄ denotes the multiplication for the motivic Hall module, the notation 𝛼𝑖 + 𝛼∨𝑖 is from

§3.4.1, and (−1/2𝑛 ) is the binomial coefficient. The sum only contains finitely many non-zero

terms, and 𝜖sd𝜃 (𝜏) is supported on the semistable locus 𝒳 sd,ss
𝜃 (𝜏) ⊂ 𝒳 sd

𝜃 .

Formally inverting the formula (5.5.3.1), we obtain the relation

[𝒳 sd,ss
𝜃 (𝜏)] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛) = 0

1
2𝑛 𝑛! ⋅ 𝜖𝛼1(𝜏) ⋄⋯ ⋄ 𝜖𝛼𝑛(𝜏) ⋄ 𝜖sd𝜌 (𝜏) , (5.5.3.2)

which we explain further in §5.5.4. This can be combined with the relation

[𝒳 sd
𝜃 ] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏(𝛼1) > ⋯ > 𝜏(𝛼𝑛) > 0

[𝒳 ss𝛼1(𝜏)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏)] ⋄ [𝒳 sd,ss𝜌 (𝜏)] (5.5.3.3)

from the Θ-stratification of 𝒳 sd, together with (5.5.2.2), to obtain the formula

[𝒳 sd
𝜃 ] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏(𝛼1) ⩾ ⋯ ⩾ 𝜏(𝛼𝑛) ⩾ 0

1
|𝑊 sd𝛼1,…,𝛼𝑛(𝜏)|

⋅ 𝜖𝛼1(𝜏) ⋄⋯ ⋄ 𝜖𝛼𝑛(𝜏) ⋄ 𝜖sd𝜌 (𝜏) , (5.5.3.4)

where 𝑊 sd𝛼1,…,𝛼𝑛(𝜏) is the group of permutations 𝜎 of {1,… , 𝑛, 𝑛∨, … , 1∨}, such that 𝜎(𝑖)∨ =
𝜎(𝑖∨) for all 𝑖, where we set (𝑖∨)∨ = 𝑖, satisfying the non-increasing condition 𝜏(𝛼𝜎(1)) ⩾
⋯ ⩾ 𝜏(𝛼𝜎(𝑛)) ⩾ 0, where we set 𝛼𝑖∨ = 𝛼∨𝑖 . For example, we have |𝑊 sd𝛼1,…,𝛼𝑛(𝜏)| = 2𝑛 𝑛! if
𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛) = 0.

5.5.4. Explanations of the coefficients. The relations between the coefficients in (5.5.2.1),

(5.5.2.2), (5.5.3.1), and (5.5.3.2), can be seen more directly by setting

𝛿(𝜏 ; 𝑡) = [{0}] + ∑
𝛼∈π0(𝒳)∖{0}∶

𝜏(𝛼)=𝑡

[𝒳 ss𝛼 (𝜏)] , 𝛿sd(𝜏) = ∑
𝜃∈π0(𝒳 sd)

[𝒳 sd,ss
𝜃 (𝜏)] ,

𝜖(𝜏 ; 𝑡) = ∑
𝛼∈π0(𝒳)∖{0}∶

𝜏(𝛼)=𝑡

𝜖𝛼(𝜏) , 𝜖sd(𝜏) = ∑
𝜃∈π0(𝒳 sd)

𝜖sd𝜃 (𝜏) ,
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as motives on 𝒳 or 𝒳 sd, where 𝑡 ∈ 𝑇 , so that these relations can be rewritten as

𝜖(𝜏 ; 𝑡) = log 𝛿(𝜏 ; 𝑡) , 𝜖sd(𝜏) = 𝛿(𝜏 ; 0)−1/2 ⋄ 𝛿sd(𝜏) ,
𝛿(𝜏 ; 𝑡) = exp 𝜖(𝜏 ; 𝑡) , 𝛿sd(𝜏) = exp(12𝜖(𝜏 ; 0)) ⋄ 𝜖sd(𝜏) ,

where we take formal power series using the product in the motivic Hall algebra.

The coefficients (−1)𝑛−1/𝑛 and (−1/2𝑛 ) in (5.5.2.1) and (5.5.3.1) are determined by the coef-

ficients 1/𝑛! and 1/(2𝑛𝑛!) in (5.5.2.2) and (5.5.3.2) in this way. They are the unique choice of

coefficients only depending on 𝑛, such that the no-pole theorem, Theorem 5.5.5, holds for the

epsilon motives. The rough reason for this is that they ensure the combinatorial descriptions

of the coefficients 1/|𝑊𝛼1,…,𝛼𝑛(𝜏)| and 1/|𝑊 sd𝛼1,…,𝛼𝑛(𝜏)| in (5.5.2.4) and (5.5.3.4), and from the

viewpoint of [31], the no-pole theorem corresponds to the property that these coefficients sum

up to 1 for all permutations 𝜎 as described for each of them, for fixed classes 𝛼𝑖.

5.5.5. The no-pole theorem. A key property of the epsilon motives is the no-pole theorem,

which states that they have pure virtual ranks in the sense of §5.2.9. This will allow us to

define numerical invariants, including Donaldson–Thomas invariants, by taking their Euler

characteristics.

Theorem. Let 𝒳 be a linear stack over 𝐾 , with quasi-compact filtrations.

(i) For any permissible stability condition 𝜏 on 𝒳 , and any 𝛼 ∈ π0(𝒳) ∖ {0}, the motive

𝜖𝛼(𝜏) has pure virtual rank 1.
(ii) If 𝒳 is equipped with a self-dual structure, then for any permissible self-dual stability

condition 𝜏 on 𝒳 , and any 𝜃 ∈ π0(𝒳 sd), the motive 𝜖sd𝜃 (𝜏) has pure virtual rank 0.

We defer the proof of the theorem to Appendix A. The linear case (i) was originally proved by

Joyce [81, Theorem 8.7], under a slightly different setting. The orthosymplectic case (ii) was

originally proved in the author’s preprint [25, Appendix E], again under a slightly different

setting. This theorem is now available in amore general form for intrinsic Donaldson–Thomas

invariants in [31, Theorem 5.3.7], but we present a proof in Appendix A that is spiritually closer

to the original proofs in [81] and [25], and requires less abstract formalism to set up.
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5.6 Donaldson–Thomas invariants

5.6.1. We now turn to the definition of Donaldson–Thomas invariants for linear and self-dual

linear stacks, where the latter is one of the main constructions of this thesis. The linear case

was first due to Joyce and Song [87] and Kontsevich and Soibelman [97].

Throughout this section, we assume that the base field 𝐾 is algebraically closed and has

characteristic zero.

5.6.2. The Behrend function. We now discuss the definition of Behrend functions of algebraic

stacks, described in §5.1.2.

For an algebraic stack 𝒳 over 𝐾 as in §3.2.2, we would like to define its Behrend function

𝜈𝒳 ∈ CF(𝒳;ℤ) . (5.6.2.1)

There are multiple ways to define it, in different generalities:

(i) The original definition of Behrend [10] works for Deligne–Mumford stacks over ℂ.
(ii) This was later extended by Joyce and Song [87, §4.1] to algebraic stacks locally of finite

type over an algebraically closed field 𝐾 of characteristic zero.

(iii) Alternatively, when𝒳 upgrades to a derived stack with a (−1)-shifted symplectic struc-

ture, we can define 𝜈𝒳 using the motivic Behrend function, which we do in §6.2.8 below.

The first two definitions agree when they are defined; the third one agrees with the second one

when 𝐾 = ℂ and when the former is defined, which can be deduced from Denef and Loeser

[48, Theorem 3.10]. Although we expect them to agree for general 𝐾 , we do not have a proof

of this yet.

In the following, we always take (iii) as our definition of 𝜈𝒳 , since we can prove more

properties of it, including crucially themotivic integral identity, which is important for proving

wall-crossing formulae for our Donaldson–Thomas invariants. As mentioned above, when

𝐾 = ℂ, we can also use (ii) instead.

5.6.3. The linear case. From now on, we fix a (−1)-shifted symplectic linear stack 𝒳 over 𝐾
in the sense of §3.7.3. Let 𝜏 be a permissible stability condition on 𝒳 , or more precisely, on

the classical truncation of 𝒳 , as in §3.5.7,
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Following Joyce and Song [87, Definition 5.15], but adapting it to our more general setting

of linear stacks, for a class 𝛼 ∈ π0(𝒳) ∖ {0}, we define the Donaldson–Thomas invariant

DT𝛼(𝜏) ∈ ℚ by the formula

DT𝛼(𝜏) = ∫
𝒳

(1 − 𝕃) ⋅ 𝜖𝛼(𝜏) ⋅ 𝜈𝒳 𝑑𝜒 , (5.6.3.1)

where the notation ∫(−) 𝑑𝜒 is defined in §5.2.8, and 𝜈𝒳 is the Behrend function of 𝒳 .

This integral is well-defined since 𝜖𝛼(𝜏) is supported on the semistable locus 𝒳 ss𝛼 (𝜏),
which is quasi-compact, and by the no-pole theorem, Theorem 5.5.5 (i).

5.6.4. The self-dual case. Assume further that 𝒳 is equipped with a self-dual structure, that

is a ℤ2-action preserving the (−1)-shifted symplectic form, and reversing the ∗/𝔾m-action,

analogously to §3.4.1.

Let 𝜏 be a permissible self-dual stability condition on (the classical truncation of) 𝒳 . For

a class 𝜃 ∈ π0(𝒳 sd), define the self-dual Donaldson–Thomas invariant DTsd
𝜃 (𝜏) ∈ ℚ by the

formula

DTsd
𝜃 (𝜏) = ∫

𝒳 sd

𝜖sd𝜃 (𝜏) ⋅ 𝜈𝒳 sd 𝑑𝜒 . (5.6.4.1)

Again, this is well-defined by the fact that 𝜖sd𝜃 (𝜏) is supported on 𝒳 sd,ss
𝜃 (𝜏), which is quasi-

compact, and by the no-pole theorem, Theorem 5.5.5 (ii).

5.6.5. For smooth stacks. Let 𝒳 be a classical linear stack that is smooth over 𝐾 , and con-

sider its (−1)-shifted cotangent stack T∗[−1]𝒳 , which has a canonical (−1)-shifted sym-

plectic structure as in §3.6.7, making it a (−1)-shifted symplectic linear stack. We have

(T∗[−1]𝒳)cl ≃ 𝒳 . If 𝒳 is equipped with a self-dual structure, then the fixed locus 𝒳 sd is

also smooth, and (T∗[−1]𝒳)sd ≃ T∗[−1]𝒳 sd.

In this case, we have 𝜈𝒳 = (−1)dim𝒳 and 𝜈𝒳 sd = (−1)dim𝒳 sd
, and (5.6.3.1)–(5.6.4.1) become

DT𝛼(𝜏) = (−1)dim𝒳𝛼 ⋅ ∫𝒳𝛼
(1 − 𝕃) ⋅ 𝜖𝛼(𝜏) 𝑑𝜒 , (5.6.5.1)

DTsd
𝜃 (𝜏) = (−1)dim𝒳 sd

𝜃 ⋅ ∫𝒳 sd
𝜃
𝜖sd𝜃 (𝜏) 𝑑𝜒 . (5.6.5.2)

The invariants DT𝛼(𝜏) are essentially the same as those defined by Joyce [83, §6.2], denoted

by 𝐽𝛼(𝜏)Ω there, while the invariants DTsd
𝜃 (𝜏) are new.
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Note that the formulae (5.6.5.1)–(5.6.5.2) also make sense for smooth (self-dual) linear

stacks over an arbitrary base field 𝐾 , not necessarily algebraically closed or of characteristic

zero. This allows us to also define Donaldson–Thomas invariants in this case.

87



Chapter 6

Motivic Donaldson–Thomas invariants

We introduce motivic enhancements of the orthosymplectic Donaldson–Thomas invariants

defined in Chapter 5, living in a ring of monodromic motives, parallel to the conjectural con-

struction of Kontsevich and Soibelman [97] in the linear case, later rigorously established

through the works of Lê [101], Bussi, Joyce, and Meinhardt [33], Ben-Bassat et al. [13], and

others.

In the linear case, these invariants are, in general, not easy to compute, but in cases where

they are computable, they often exhibit interesting and rich structures. See Behrend, Bryan,

and Szendrői [11], Morrison, Mozgovoy, Nagao, and Szendrői [115], Davison and Meinhardt

[42; 43], etc., for examples. It would be interesting to explore if the orthosymplectic case also

has similar interesting structures.

6.1 Monodromic motives

6.1.1. Idea. The motivic Donaldson–Thomas invariants are defined using the ring of mono-

dromic motives, a variant of the ring of motives defined in §5.2.

To explain the rough idea of monodromic motives, it might be more straightforward to

work in the analytic setting. For this purpose, let 𝑋 be a complex manifold, with a smooth

metric 𝑑 ∶ 𝑋 ×𝑋 → ℝ⩾0, and let 𝑓 ∶ 𝑋 → ℂ be a holomorphic function. Let 𝑥 ∈ 𝑋 be a point

such that 𝑓 (𝑥) = 0. Let 0 < 𝛿 ≪ 𝜀 ≪ 1 be small positive numbers, and consider the map

𝑋 ×
𝛿,𝜀(𝑥) = 𝐵𝜀(𝑥) ∩ 𝑓 −1(𝐷×

𝛿 )
𝑓⟶ 𝐷×

𝛿 ,

88



where𝐷×
𝛿 = {𝑧 ∈ ℂ ∣ 0 < |𝑧| < 𝛿}. This map is a topological fibration, and its fibre MF𝑓 (𝑥) is

called the Milnor fibre of 𝑓 at 𝑥 . The cohomology of MF𝑓 (𝑥) is often called the nearby cycles

of 𝑓 at 𝑥 , and carries the action of the monodromy operator induced by this fibration.

There is also a motivic analogue of this construction, called themotivic Milnor fibre, which

we discuss in §6.2 below.

The ring of monodromic motives can then be roughly thought of as having Milnor fibres

of functions as above as its elements, equipped with monodromy actions, and these elements

satisfy cut-and-paste relations (5.2.1.1) for closed subsets respecting the monodromy action.

6.1.2. Monodromic motives. We define the ring of monodromic motives over a stack 𝒳 , ex-

tending the ring of motives 𝕄̂(𝒳;𝐴) defined in §5.2.6.

Let μ̂ = lim μ𝑛 be the projective limit of the groups of roots of unity. For a scheme𝑍 , a good

action of μ̂ on 𝑍 is one that factors through μ𝑛 for some 𝑛, such that each orbit is contained in

an affine open subscheme of 𝑍 .

For a stack 𝒳 over 𝐾 as in §3.2.2, and a commutative ring 𝐴, define

𝐾 μ̂(𝒳;𝐴) = ⨁̂
𝑍→𝒳

𝐴 ⋅ [𝑍]/∼ , (6.1.2.1)

𝕄̂μ̂(𝒳;𝐴) = 𝐾 μ̂(𝒳;𝐴) ⊗̂
𝐴[𝕃]

𝐴[𝕃±1, (𝕃𝑘 − 1)−1]/≈ , (6.1.2.2)

where ⊕̂ and ⊗̂ indicate that we allow locally finite sums, as in §5.2.2 and §5.2.6, and we sum

over morphisms 𝑍 → 𝒳 with a good μ̂-action on 𝑍 , called themonodromy action, that is com-

patible with the trivial μ̂-action on 𝒳 . The relation ∼ is generated by [𝑍] ∼ [𝑍 ′] + [𝑍 ∖ 𝑍 ′]
for μ̂-invariant closed subschemes 𝑍 ′ ⊂ 𝑍 , and [𝑍 × 𝑉 ] ∼ [𝑍 × 𝔸𝑛] for a μ̂-representation 𝑉
of dimension 𝑛, where the projections to 𝒳 factor through 𝑍 , and μ̂ acts trivially on 𝔸𝑛. The

definition of ≈ is slightly more involved, and can be found in Ben-Bassat et al. [13, Defin-

ition 5.13], where it is denoted by 𝐼 st,μ̂𝒳 . There is a map 𝕄̂(𝒳;𝐴) → 𝕄̂μ̂(𝒳;𝐴) given by

[𝑍] ↦ [𝑍] on generators, with trivial μ̂-action.
There is a commutativemultiplication on 𝕄̂μ̂(𝒳;𝐴), denoted by ‘⊙’ in [13, Definition 5.13],

which is different from the one given by the fibre product in general. Equipped with this

multiplication, 𝕄̂μ̂(𝒳;𝐴) is a commutative 𝐴-algebra, called the ring of monodromic motives

over 𝒳 .
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6.1.3. Properties. There are pullback and pushforwardmaps for monodromic motives, similar

to those defined in §5.2.3, and they satisfy the base change and projection formulae (5.2.3.1)–

(5.2.3.2).

Define a subring

𝕄̂μ̂,∘(𝒳;𝐴) ⊂ 𝕄̂μ̂(𝒳;𝐴) (6.1.3.1)

as the set of motives whose underlying motives live in the subring 𝕄̂∘(𝒳;𝐴) defined in §5.2.8.

When 𝐴 contains ℚ, there is an Euler characteristic map

𝜒 ∶ 𝕄̂μ̂,∘(𝒳;𝐴) → CF(𝒳;𝐴) , (6.1.3.2)

defined via the underlying non-monodromic motive.

6.1.4. Motives of double covers. There is an element

𝕃1/2 = 1 − [μ2] ∈ 𝕄̂μ̂(𝐾) , (6.1.4.1)

where μ2 is equipped with the unique non-trivial μ̂-action. This element satisfies (𝕃1/2)2 = 𝕃.
We also write 𝕃−1/2 = 𝕃−1 ⋅ 𝕃1/2. In particular, we have 𝜒(𝕃1/2) = −1.

As in Bussi, Joyce, and Meinhardt [33, §2.5] and Ben-Bassat et al. [13, Definition 5.13], for

a principal μ2-bundle 𝒫 → 𝒳 , we have an element

Υ(𝒫 ) = ([𝒳] − [𝒫 ]) ∈ 𝕄̂μ̂(𝒳) , (6.1.4.2)

where μ̂ acts trivially on 𝒳 and via the μ2-action on 𝒫 , and monodromic motives of stacks

are defined by a similar process to that in §5.2.5. This construction satisfies Υ(𝒫 ⊗ 𝒬) =
Υ(𝒫 ) ⋅ Υ(𝒬) for principal μ2-bundles 𝒫 ,𝒬 → 𝒳 , where 𝒫 ⊗ 𝒬 denotes the tensor product

principal μ2-bundle.

6.2 The motivic Behrend function

6.2.1. We introduce the motivic Behrend function, which is a motivic enhancement of the

Behrend function introduced in §5.6.2. It can be seen as a motivic version and a globaliza-

tion of the construction of Milnor fibres mentioned in §6.1.1.

For functions on smooth varieties, the Milnor fibre was constructed by Denef and Loeser
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[46–48], and is a monodromic motive on the zero locus of the function. See also Looijenga

[102]. This was later generalized to the case of stacks by Ben-Bassat et al. [13]. Here, we

slightly generalize this construction by weakening the assumptions on the stack.

6.2.2. Local structure. For our constructions, we will need our stacks to satisfy local condi-

tions, which we introduce now.

Recall from §5.3.2 the definition of a Nisnevich cover of an algebraic stack.

For an algebraic stack𝒳 satisfying the assumptions in §3.2.2, we say that𝒳 is étale (orNis-

nevich) locally a quotient stack, if it admits a representable étale (or Nisnevich) cover by quo-

tient stacks of the form 𝑈/GL(𝑛), with 𝑈 an algebraic space.

We say that𝒳 is étale (or Nisnevich) locally fundamental, if it admits a representable étale

(or Nisnevich) cover by quotient stacks of the form 𝑈/GL(𝑛), with 𝑈 an affine scheme.

These conditions are preserved by taking ℤ2-fixed points by Lemma 3.4.5.

For example, by Alper, Hall, and Rydh [4, Theorem 6.1], 𝒳 is Nisnevich locally funda-

mental if it admits a good moduli space in the sense of Alper [2]. Also, by Alper, Hall, and

Rydh [3, Theorem 1.1], 𝒳 is étale locally fundamental if closed points of 𝒳 have linearly

reductive stabilizers, and if every point of 𝒳 specializes to a closed point.

6.2.3. The motivic Milnor fibre. Let 𝐾 be an algebraically closed field of characteristic zero.

By a smooth𝐾 -variety, we mean an integral, separated𝐾 -scheme of finite type that is smooth

over Spec𝐾 .

Let 𝑋 be a smooth 𝐾 -variety, and let 𝑓 ∶ 𝑋 → 𝔸1 be a morphism. Write 𝑋0 = 𝑓 −1(0).
Following Denef and Loeser [46–48], we define the motivic Milnor fibre of 𝑓 , which is an

element

MF𝑓 ∈ 𝕄μ̂(𝑋0) ,

as follows.

If 𝑓 is constant, define MF𝑓 = 0. Otherwise, choose a resolution 𝜋 ∶ 𝑋 → 𝑋 of 𝑓 , in the

sense that 𝑋 is a smooth 𝐾 -variety, 𝜋 is a proper morphism that restricts to an isomorphism

on 𝜋−1(𝑋 ∖ 𝑋0), and 𝜋−1(𝑋0) is a simple normal crossings divisor in 𝑋 . See, for example,

Kollár [96] for the existence of such resolutions and their properties.

Let (𝐸𝑖)𝑖∈𝐽 be the irreducible components of 𝜋−1(𝑋0), and write 𝑁𝑖 for the multiplicity
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of 𝐸𝑖 in the divisor of 𝑓 ∘𝜋 on𝑋 . For a non-empty subset 𝐼 ⊂ 𝐽 , write 𝐸∘𝐼 = ⋂𝑖∈𝐼 𝐸𝑖∖⋃𝑖∉𝐼 𝐸𝑖.

Let𝑚𝐼 = gcd𝑖∈𝐼 𝑁𝑖, and define an𝑚𝐼 -fold cover 𝐸∘𝐼 → 𝐸∘𝐼 as follows. For each open set 𝑈 ⊂ 𝑋
such that 𝑓 ∘ 𝜋 = 𝑢𝑣𝑚𝐼 on 𝑈 for 𝑢 ∶ 𝑈 → 𝔸1 ∖ {0} and 𝑣 ∶ 𝑈 → 𝔸1, define the restriction

of 𝐸∘𝐼 on 𝐸∘𝐼 ∩ 𝑈 as

𝐸∘𝐼 |𝐸∘𝐼∩𝑈 = {(𝑧, 𝑦) ∈ 𝔸1 × (𝐸∘𝐼 ∩ 𝑈) | 𝑧𝑚𝐼 = 𝑢−1} . (6.2.3.1)

Since 𝐸∘𝐼 can be covered by such open sets 𝑈 , (6.2.3.1) can be glued together to obtain a cover

𝐸∘𝐼 → 𝐸∘𝐼 , with a natural μ𝑚𝐼 -action given by scaling the 𝑧-coordinate, which induces a μ̂-
action on 𝐸∘𝐼 . The motivic Milnor fibre MF𝑓 is then given by

MF𝑓 = ∑
∅≠𝐼⊂𝐽

(1 − 𝕃)|𝐼 |−1 [𝐸∘𝐼 ] . (6.2.3.2)

It can be shown [47, Definition 3.8] that this is independent of the choice of the resolution 𝜋 .

6.2.4. d-critical stacks. We now introduce a convenient tool, the notion of d-critical structures

due to Joyce [84] and Ben-Bassat et al. [13], which describe some information about (−1)-
shifted symplectic structures but entirely on the classical stack.

More precisely, given a (−1)-shifted symplectic stack𝒳 over𝐾 , Ben-Bassat et al. [13, §3.3]

define an induced d-critical structure on its classical truncation 𝒳cl, so that 𝒳cl is a d-critical

stack. See there and Joyce [84] for the precise definitions. For our purposes, it suffices to know

the following properties:

(i) For a smooth 𝐾 -variety 𝑈 and a function 𝑓 ∶ 𝑈 → 𝔸1, the critical locus Crit(𝑓 ) ⊂ 𝑈
carries a canonical d-critical structure.

(ii) d-critical structures can be pulled back along smooth morphisms of algebraic stacks

over 𝐾 .

(iii) If a 𝐾 -scheme 𝑋 carries a d-critical structure, then it can be covered by open subs-

chemes called critical charts, each of which with the induced d-critical structure has the

form Crit(𝑓 ) as in (i), such that Crit(𝑓 ) ⊂ 𝑓 −1(0). We denote such a critical chart by

𝑖 ∶ Crit(𝑓 ) ↪ 𝑋 .

(iv) Given a d-critical stack𝒳 , we have its canonical bundle𝐾𝒳 , which models the canonical

bundle of the original (−1)-shifted symplectic stack as in §3.6.8. We can define orient-
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ations of d-critical stacks using this canonical bundle, as in §3.6.8. Moreover, by Joyce

[84, Lemma 2.58], for a smooth morphism 𝑔 ∶ 𝒴 → 𝒳 of d-critical stacks, compatible

with the d-critical structures, an orientation (𝐾 1/2𝒳 , 𝑜𝒳 ) of 𝒳 induces an orientation

(𝐾 1/2𝒴 , 𝑜𝒴 ) of𝒴 given by 𝐾 1/2𝒴 = 𝑔∗(𝐾 1/2𝒳 ) ⊗ det𝕃𝒴/𝒳 |𝒴 red .

6.2.5. Definition for schemes. Let 𝑋 be an oriented d-critical 𝐾 -scheme. Its motivic Behrend

function 𝜈mot𝑋 ∈ 𝕄μ̂(𝑋) is defined by the following property:

• For any critical chart 𝑖 ∶ Crit(𝑓 ) ↪ 𝑋 , where 𝑓 ∶ 𝑈 → 𝔸1 and 𝑈 is a smooth 𝐾 -variety,

we have

𝑖∗(𝜈mot𝑋 ) = −𝕃−dim𝑈/2 ⋅ (MF𝑓 − [𝑈0]) ⋅ Υ(𝑖∗(𝐾 1/2𝑋 ) ⊗ 𝐾−1𝑈 |Crit(𝑓 )red) , (6.2.5.1)

in𝕄μ̂(Crit(𝑓 )), where𝑈0 = 𝑓 −1(0), andMF𝑓 −[𝑈0] is supported on Crit(𝑓 ). Themap Υ
is as in §6.1.4, and the part inside Υ(…) is a line bundle on Crit(𝑓 )red whose square is
trivial, so it can be seen as a μ2-bundle.

This is well-defined due to Bussi, Joyce, and Meinhardt [33, Theorem 5.10].

For 𝑋 as above, and a smooth morphism 𝑔 ∶ 𝑌 → 𝑋 of relative dimension 𝑑 , where 𝑌 is

equipped with the induced oriented d-critical structure, we have the relation

𝑔∗(𝜈mot𝑋 ) = 𝕃𝑑/2 ⋅ 𝜈mot𝑌 , (6.2.5.2)

which follows from Ben-Bassat et al. [13, Theorem 5.14].

6.2.6. Definition for stacks. Let𝒳 be an oriented d-critical stack over 𝐾 , and assume that𝒳
is Nisnevich locally a quotient stack in the sense of §6.2.2.

We define the motivic Behrend function of𝒳 , slightly generalizing the construction of [13,

Theorem 5.14], who only considered stacks that are Zariski locally quotient stacks.

Theorem. Let 𝒳 be as above. Then there exists a unique element

𝜈mot
𝒳 ∈ 𝕄μ̂(𝒳) ,

called the motivic Behrend function of𝒳 , such that for any 𝐾 -variety 𝑌 and any smooth morph-

ism 𝑓 ∶ 𝑌 → 𝒳 of relative dimension 𝑑 , we have

𝑓 ∗(𝜈mot
𝒳 ) = 𝕃𝑑/2 ⋅ 𝜈mot𝑌 (6.2.6.1)

93



in𝕄μ̂(𝑌), where 𝑌 is equipped with the induced oriented d-critical structure.

Proof. We first show that the theorem holds when 𝒳 = 𝑋 is an algebraic space. Indeed,

this follows formally from Theorem 5.3.3 and the relation (6.2.5.2) for schemes, since 𝑋 has a

Nisnevich cover by affine varieties.

Also, note that if the element 𝜈mot
𝒳 exists, then the relation (6.2.6.1) must also hold for

smooth morphisms from algebraic spaces 𝑌 to 𝒳 , by passing to a Nisnevich cover of 𝑌 by

affine varieties.

Now, the proof of [13, Theorem 5.14] can be repeated word-by-word to show that the

theorem is true when 𝒳 ≃ [𝑆/𝐺] is a quotient stack, where 𝑆 is an algebraic space over 𝐾
and 𝐺 = GL(𝑛) for some 𝑛.

For the general case, let (𝑗𝑖 ∶ 𝒳𝑖 ↪ 𝒳)𝑖∈𝐼 be a Nisnevich cover by quotient stacks. The

condition on 𝜈mot
𝒳 forces that 𝑗∗𝑖 (𝜈mot

𝒳 ) = 𝜈mot
𝒳𝑖 for all 𝑖. We show that the elements 𝜈mot

𝒳𝑖 agree

on overlaps. Indeed, let 1, 2 ∈ 𝐼 be two indices, and let 𝒳1,2 = 𝒳1 ×𝒳 𝒳2. Then 𝒳1,2 is

also a quotient stack, so the theorem holds for 𝒳1,2. Let 𝑗′𝑖 ∶ 𝒳1,2 → 𝒳𝑖 be the projections,

where 𝑖 = 1, 2. Then we have (𝑗′𝑖 )∗(𝜈mot
𝒳𝑖 ) = 𝜈mot

𝒳1,2 for 𝑖 = 1, 2, since the left-hand side satisfies

the characterizing property of 𝜈mot
𝒳1,2 . By Theorem 5.3.3, it then follows that the elements 𝜈mot

𝒳𝑖

for 𝑖 ∈ 𝐼 glue to a unique element 𝜈mot
𝒳 , and a standard argument verifies that it satisfies the

relation (6.2.6.1).

6.2.7. Compatibility with smooth pullbacks. We now show that the smooth pullback rela-

tion (6.2.6.1) holds for all smooth morphisms of d-critical stacks.

Theorem. Let𝒳,𝒴 be oriented d-critical stacks over𝐾 that are Nisnevich locally quotient stacks,

and let 𝑓 ∶ 𝒴 → 𝒳 be a smooth morphism of relative dimension 𝑑 which is compatible with the

oriented d-critical structures. Then we have the relation

𝑓 ∗(𝜈mot
𝒳 ) = 𝕃𝑑/2 ⋅ 𝜈mot

𝒴 . (6.2.7.1)

Proof. It is straightforward to verify that the element 𝕃−𝑑/2 ⋅ 𝑓 ∗(𝜈mot
𝒳 ) satisfies the character-

izing property of 𝜈mot
𝒴 .

6.2.8. The numerical Behrend function. Let𝒳 be an algebraic stack over𝐾 that is Nisnevich

locally a quotient stack, equipped with an oriented d-critical structure. The Behrend function
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of 𝒳 is the constructible function

𝜈𝒳 = 𝜒(𝜈mot
𝒳 ) ∈ CF(𝒳) ,

where 𝜒 denotes taking the pointwise Euler characteristic, as in §5.2.7.

In fact, we can define 𝜈𝒳 for any stack 𝒳 satisfying the assumptions in §3.2.2 in this

way, without the local condition or the orientability assumption. Indeed, the relation (6.2.7.1)

implies that the numerical Behrend function is compatible with smoothmorphisms preserving

the d-critical structure (not necessarily orientations), up to a sign (−1)𝑑 , where 𝑑 is the relative

dimension. This is because changing the orientation only affects the term Υ(…) in (6.2.5.1),

which always has Euler characteristic 1, and the sign is due to the fact that 𝜒(𝕃1/2) = −1.
Now, to define 𝜈𝒳 , one can pass to a smooth cover of 𝒳 by 𝐾 -varieties, and apply smooth

descent of constructible functions.

When 𝐾 = ℂ, the Behrend function 𝜈𝒳 agrees with the original definitions by Behrend

[10] and Joyce and Song [87, §4.1]. This follows from the compatibility of both versions with

smooth pullbacks, namely Theorem 6.2.7 and [87, Theorem 4.3], and the case of critical loci

on smooth varieties, which follows from Denef and Loeser [48, Theorem 3.10] and Joyce and

Song [87, Theorem 4.7].

6.3 Motivic Donaldson–Thomas invariants

6.3.1.MotivicDonaldson–Thomas invariants. Let𝒳 be a (−1)-shifted symplectic linear stack

over 𝐾 , equipped with an orientation data as in §3.7.4. Assume that its classical truncation

𝒳cl is Nisnevich locally a quotient stack, as in §6.2.2.

For a permissible stability condition 𝜏 on 𝒳 , and a class 𝛼 ∈ π0(𝒳) ∖ {0}, following the

construction of Kontsevich and Soibelman [97], define the motivic Donaldson–Thomas invari-

ant DTmot
𝛼 (𝜏) ∈ 𝕄̂mot(𝐾;ℚ) by the formula

DTmot
𝛼 (𝜏) = ∫𝒳𝛼

(𝕃1/2 − 𝕃−1/2) ⋅ 𝜖𝛼(𝜏) ⋅ 𝜈mot
𝒳 , (6.3.1.1)

where 𝜈mot
𝒳 is the motivic Behrend function of 𝒳 defined in §3.6.8.

Now, suppose further that 𝒳 is equipped with a self-dual structure as in §3.7.5, together
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with a self-dual orientation data.

For a self-dual permissible stability condition 𝜏 and a class 𝜃 ∈ π0(𝒳 sd), define the self-
dual motivic Donaldson–Thomas invariant DTmot,sd

𝜃 (𝜏) ∈ 𝕄̂mot(𝐾;ℚ) by

DTmot,sd
𝜃 (𝜏) = ∫𝒳 sd

𝜃
𝜖sd𝜃 (𝜏) ⋅ 𝜈mot

𝒳 sd . (6.3.1.2)

This is the main construction of this chapter.

6.3.2. For smooth stacks. Let 𝒳 be a linear stack which is smooth and Nisnevich locally a

quotient stack, and consider its (−1)-shifted cotangent stack T∗[−1]𝒳 , as in §5.6.5. It has a

canonical (−1)-shifted symplectic linear structure and orientation data, and in the self-dual

case, also a canonical self-dual orientation data.

The motivic Behrend function of 𝒳 is 𝜈mot
𝒳 = 𝕃−dim𝒳/2 by Theorem 6.2.7, where dim𝒳

refers to the dimension of the classical smooth stack 𝒳 . The formulae (6.3.1.1)–(6.3.1.2) can

be simplified to

DTmot
𝛼 (𝜏) = 𝕃1/2 − 𝕃−1/2

𝕃dim𝒳𝛼/2
⋅ ∫𝒳𝛼

𝜖𝛼(𝜏) , (6.3.2.1)

DTmot,sd
𝜃 (𝜏) = 𝕃−dim𝒳 sd

𝜃 /2 ⋅ ∫𝒳 sd
𝜃
𝜖sd𝜃 (𝜏) . (6.3.2.2)
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Chapter 7

Wall-crossing formulae

This chapter discusses wall-crossing formulae for our orthosymplectic Donaldson–Thomas in-

variants defined in Chapters 5 and 6, which are formulae that characterize the change of these

invariants when we change the stability condition. These formulae are an important feature

of the invariants, and impose a strong constraint on the structure of the invariants, as we

mentioned in §1.4.7.

We first prove wall-crossing formulae for epsilon motives in Theorem 7.1.3, which we

then use in §7.3 to obtain wall-crossing formulae for Donaldson–Thomas invariants. Finally,

in §7.5, we prove wall-crossing formulae for Donaldson–Thomas invariants when changing

Bridgeland stability conditions in the derived category.

7.1 Wall-crossing for epsilon motives

7.1.1. Throughout, let𝒳 be a self-dual linear stack with quasi-compact filtrations as in §3.3.4.

Results in the linear case will not need the self-dual structure on 𝒳 , and we will indicate this

when it is the case.

7.1.2. Dominance of stability conditions. For stability conditions 𝜏0, 𝜏 on𝒳 , following Joyce

[81, Definition 4.10], we say that 𝜏0 dominates 𝜏 , if 𝜏(𝛼1) ⩽ 𝜏(𝛼2) implies 𝜏0(𝛼1) ⩽ 𝜏0(𝛼2) for
all 𝛼1, 𝛼2 ∈ 𝜋0(𝒳) ∖ {0}.

In this case, the Θ-stratification of𝒳 given by 𝜏 refines the one given by 𝜏0, and in partic-

ular, we have 𝒳 ss𝛼 (𝜏) ⊂ 𝒳 ss𝛼 (𝜏0) for all 𝛼 ∈ 𝜋0(𝒳) ∖ {0}.
For example, every stability condition is dominated by the trivial stability condition.
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7.1.3. Theorem. Let 𝜏+, 𝜏−, 𝜏0 be permissible self-dual stability conditions on 𝒳 , with 𝜏0 domin-

ating both 𝜏+ and 𝜏−. Then for any 𝛼 ∈ 𝜋0(𝒳) and 𝜃 ∈ 𝜋0(𝒳 sd), we have the relations

[𝒳 ss𝛼 (𝜏−)] = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝑆(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ [𝒳 ss𝛼1(𝜏+)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏+)] , (7.1.3.1)

[𝒳 sd,ss
𝜃 (𝜏−)] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0}, 𝜌 ∈ 𝜋0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌

𝑆sd(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ [𝒳 ss𝛼1(𝜏+)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏+)] ⋄ [𝒳 sd,ss𝜌 (𝜏+)] ,
(7.1.3.2)

𝜖𝛼(𝜏−) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝑈(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ 𝜖𝛼1(𝜏+) ∗ ⋯ ∗ 𝜖𝛼𝑛(𝜏+) , (7.1.3.3)

𝜖sd𝜃 (𝜏−) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0}, 𝜌 ∈ 𝜋0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌

𝑈 sd(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ 𝜖𝛼1(𝜏+) ⋄⋯ ⋄ 𝜖𝛼𝑛(𝜏+) ⋄ 𝜖sd𝜌 (𝜏+) , (7.1.3.4)

in𝕄(𝒳𝛼 ; ℚ) and 𝕄(𝒳 sd
𝜃 ; ℚ), where the sums are finite, and

𝑆(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) =
𝑛−1
∏
𝑖=1

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

1, 𝜏+(𝛼𝑖) > 𝜏+(𝛼𝑖+1) and
𝜏−(𝛼1 +⋯+ 𝛼𝑖) ⩽ 𝜏−(𝛼𝑖+1 +⋯+ 𝛼𝑛)

−1, 𝜏+(𝛼𝑖) ⩽ 𝜏+(𝛼𝑖+1) and
𝜏−(𝛼1 +⋯+ 𝛼𝑖) > 𝜏−(𝛼𝑖+1 +⋯+ 𝛼𝑛)

0, otherwise

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

, (7.1.3.5)

𝑆sd(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) =
𝑛
∏
𝑖=1

⎧⎪
⎨⎪
⎩

1, 𝜏+(𝛼𝑖) > 𝜏+(𝛼𝑖+1) and 𝜏−(𝛼1 +⋯+ 𝛼𝑖) ⩽ 0
−1, 𝜏+(𝛼𝑖) ⩽ 𝜏+(𝛼𝑖+1) and 𝜏−(𝛼1 +⋯+ 𝛼𝑖) > 0
0, otherwise

⎫⎪
⎬⎪
⎭

, (7.1.3.6)

𝑈(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) =

∑
0 = 𝑎0 < ⋯ < 𝑎𝑚 = 𝑛, 0 = 𝑏0 < ⋯ < 𝑏ℓ = 𝑚∶
Writing 𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 for 𝑖 = 1,… ,𝑚,
and 𝛾𝑖 = 𝛽𝑏𝑖−1+1 +⋯+ 𝛽𝑏𝑖 for 𝑖 = 1,… , ℓ,
we have 𝜏+(𝛼𝑗) = 𝜏+(𝛽𝑖) for all 𝑎𝑖−1 < 𝑗 ⩽ 𝑎𝑖,
and 𝜏−(𝛾𝑖) = 𝜏−(𝛼1 +⋯+ 𝛼𝑛) for all 𝑖 = 1,… , ℓ

(−1)ℓ−1
ℓ ⋅ (

ℓ
∏
𝑖=1

𝑆(𝛽𝑏𝑖−1+1, … , 𝛽𝑏𝑖 ; 𝜏+, 𝜏−)) ⋅ (
𝑚
∏
𝑖=1

1
(𝑎𝑖 − 𝑎𝑖−1)!

) ,

(7.1.3.7)
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𝑈 sd(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) =

∑
0 = 𝑎0 < ⋯ < 𝑎𝑚 ⩽ 𝑛, 0 = 𝑏0 < ⋯ < 𝑏ℓ ⩽ 𝑚∶
Writing 𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 for 𝑖 = 1,… ,𝑚,
and 𝛾𝑖 = 𝛽𝑏𝑖−1+1 +⋯+ 𝛽𝑏𝑖 for 𝑖 = 1,… , ℓ,
we have 𝜏+(𝛼𝑗) = 𝜏+(𝛽𝑖) for all 𝑎𝑖−1 < 𝑗 ⩽ 𝑎𝑖,
𝜏+(𝛼𝑗) = 0 for all 𝑗 > 𝑎𝑚 ,
and 𝜏−(𝛾𝑖) = 0 for all 𝑖 = 1,… , ℓ

(−1/2ℓ ) ⋅ (
ℓ

∏
𝑖=1

𝑆(𝛽𝑏𝑖−1+1, … , 𝛽𝑏𝑖 ; 𝜏+, 𝜏−)) ⋅ 𝑆sd(𝛽𝑏ℓ+1, … , 𝛽𝑚; 𝜏+, 𝜏−) ⋅

(
𝑚
∏
𝑖=1

1
(𝑎𝑖 − 𝑎𝑖−1)!

) ⋅ 1
2𝑛−𝑎𝑚 (𝑛 − 𝑎𝑚)!

, (7.1.3.8)

where we set 𝜏+(𝛼𝑛+1) = 0 in (7.1.3.6).

For (7.1.3.1) and (7.1.3.3), we do not need 𝒳 or 𝜏+, 𝜏−, 𝜏0 to be self-dual.

The formulae (7.1.3.1) and (7.1.3.3) were originally due to Joyce [83, Theorem 5.2], under a

slightly different setting. The self-dual versions (7.1.3.2) and (7.1.3.4) are new.

The coefficients (7.1.3.5)–(7.1.3.8) are combinatorial, and are defined whenever 𝜏± are maps

from the set 𝐶 = {𝛼𝑖 +⋯ + 𝛼𝑗 ∣ 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛} of symbolic sums to totally ordered sets 𝑇±,
such that 𝜏+(𝛾1) ⩽ 𝜏+(𝛾2) implies 𝜏+(𝛾1) ⩽ 𝜏+(𝛾1 +𝛾2) ⩽ 𝜏+(𝛾2) whenever 𝛾1, 𝛾2, 𝛾1 +𝛾2 ∈ 𝐶 ,
and similarly for 𝜏−. For (7.1.3.6) and (7.1.3.8), we also require distinguished elements 0 ∈ 𝑇±.

Proof. The Θ-stratifications of𝒳 ss𝛼 (𝜏0) and𝒳 sd,ss
𝜃 (𝜏0) defined by 𝜏+ and 𝜏− give the relations

[𝒳 ss𝛼 (𝜏0)] = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,
𝜏0(𝛼1) = ⋯ = 𝜏0(𝛼𝑛),
𝜏±(𝛼1) > ⋯ > 𝜏±(𝛼𝑛)

[𝒳 ss𝛼1(𝜏±)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏±)] , (7.1.3.9)

[𝒳 sd,ss
𝜃 (𝜏0)] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0}, 𝜌 ∈ 𝜋0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏0(𝛼1) = ⋯ = 𝜏0(𝛼𝑛) = 0,
𝜏±(𝛼1) > ⋯ > 𝜏±(𝛼𝑛) > 0

[𝒳 ss𝛼1(𝜏±)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏±)] ⋄ [𝒳 sd,ss𝜌 (𝜏±)] , (7.1.3.10)

where the ‘±’ signs mean that we have a relation for 𝜏+, and another for 𝜏−. These are finite
sums by Lemma 3.5.8, and agree with (7.1.3.1)–(7.1.3.2) with 𝜏±, 𝜏0 in place of 𝜏+, 𝜏−.

These relations then imply the relations

[𝒳 ss𝛼 (𝜏±)] = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,
𝜏0(𝛼1) = ⋯ = 𝜏0(𝛼𝑛),
𝜏±(𝛼1 +⋯+ 𝛼𝑖) > 𝜏±(𝛼𝑖+1 +⋯+ 𝛼𝑛) for 𝑖 = 1,… , 𝑛 − 1

(−1)𝑛−1 ⋅ [𝒳 ss𝛼1(𝜏0)] ∗ ⋯ ∗ [𝒳 ss𝛼𝑛(𝜏0)] , (7.1.3.11)
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[𝒳 sd,ss
𝜃 (𝜏±)] = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0}, 𝜌 ∈ 𝜋0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌,

𝜏0(𝛼1) = ⋯ = 𝜏0(𝛼𝑛) = 0,
𝜏±(𝛼1 +⋯+ 𝛼𝑖) > 0 for 𝑖 = 1,… , 𝑛

(−1)𝑛 ⋅ [𝒳 ss𝛼1(𝜏0)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏0)] ⋄ [𝒳 sd,ss𝜌 (𝜏0)] , (7.1.3.12)

which agree with (7.1.3.1)–(7.1.3.2) with 𝜏0, 𝜏± in place of 𝜏+, 𝜏−. Indeed, these can be veri-

fied by expanding the right-hand sides of (7.1.3.11)–(7.1.3.12) using (7.1.3.9)–(7.1.3.10), then

applying Lemma 7.1.4 below to see that the results are equal to the left-hand sides.

Now, expanding the right-hand sides of (7.1.3.11)–(7.1.3.12) for 𝜏+ using (7.1.3.9)–(7.1.3.10)

for 𝜏−, then applying Lemma 7.1.4 below, gives the general case of (7.1.3.1)–(7.1.3.2).

To verify the relations (7.1.3.3)–(7.1.3.4), we first substitute the relations (7.1.3.1)–(7.1.3.2),

in (5.5.2.1), (5.5.3.1) for 𝜏−, then substitute in (5.5.2.2), (5.5.3.2) for 𝜏+. Keeping track of the

coefficients gives the desired relations.

7.1.4. Lemma. For symbols 𝛼1, … , 𝛼𝑛 and maps 𝜏1, 𝜏2, 𝜏3 from {𝛼𝑖 +⋯+𝛼𝑗 ∣ 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛} to
totally ordered sets with distinguished elements 0, we have the identities

𝑆(𝛼1, … , 𝛼𝑛; 𝜏1, 𝜏3) = ∑
(𝛽1,…,𝛽𝑚)∈𝑄

𝑆(𝛽1, … , 𝛽𝑚; 𝜏2, 𝜏3) ⋅
𝑚
∏
𝑖=1

𝑆(𝛼𝑎𝑖−1+1 , … , 𝛼𝑎𝑖 ; 𝜏1, 𝜏2) , (7.1.4.1)

𝑆sd(𝛼1, … , 𝛼𝑛; 𝜏1, 𝜏3) = ∑
(𝛽1,…,𝛽𝑚)∈𝑄sd

𝑆sd(𝛽1, … , 𝛽𝑚; 𝜏2, 𝜏3) ⋅

(
𝑚
∏
𝑖=1

𝑆(𝛼𝑎𝑖−1+1 , … , 𝛼𝑎𝑖 ; 𝜏1, 𝜏2)) ⋅ 𝑆sd(𝛼𝑎𝑚+1 , … , 𝛼𝑛; 𝜏1, 𝜏2) , (7.1.4.2)

where

𝑄 = { (𝛽1, … , 𝛽𝑚) |
𝑚 ⩾ 1, 0 = 𝑎0 < ⋯ < 𝑎𝑚 = 𝑛,
𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 for all 𝑖

} ,

𝑄sd = { (𝛽1, … , 𝛽𝑚) |
𝑚 ⩾ 0, 0 = 𝑎0 < ⋯ < 𝑎𝑚 ⩽ 𝑛,
𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 for all 𝑖

} .

Proof. The identity (7.1.4.1) was proved in Joyce [83, Theorem 4.5]. The identity (7.1.4.2)

follows from (7.1.4.1) and the fact that 𝑆sd(𝛼1, … , 𝛼𝑛; 𝜏𝑖, 𝜏𝑗) = 𝑆(𝛼1, … , 𝛼𝑛, ∞; 𝜏𝑖, 𝜏𝑗), where
we set 𝜏𝑖(𝛼𝑗 +⋯+ 𝛼𝑛 + ∞) = 0 for all 𝑖 and all 1 ⩽ 𝑗 ⩽ 𝑛 + 1.

7.1.5.Weakening the assumptions. In Theorem 7.1.3, we can slightly weaken the assumptions

by allowing 𝜏0 to be non-permissible, so that 𝒳 ss𝛼 (𝜏0) can be non-quasi-compact, and we add
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the extra assumption that the sums (7.1.3.11)–(7.1.3.12) are locally finite for all classes 𝛼, 𝜃 . In
this case, the relations (7.1.3.9)–(7.1.3.10) are always valid as locally finite sums, and the proof

shows that the relations (7.1.3.1)–(7.1.3.4) still hold as locally finite sums.

7.2 An anti-symmetric version

7.2.1. In this section, we rewrite the relations (7.1.3.3)–(7.1.3.4) in terms of anti-symmetric

product operations, instead of the operations ∗ and ⋄. This will be useful in writing down

wall-crossing formulae for Donaldson–Thomas invariants in §7.3 below.

As in §7.1.1, let 𝒳 be a self-dual linear stack with quasi-compact filtrations.

7.2.2. Lie algebras and twisted modules. The motivic Hall algebra𝕄(𝒳) can be seen as a Lie

algebra using the commutator

[𝑎, 𝑏] = 𝑎 ∗ 𝑏 − 𝑏 ∗ 𝑎 . (7.2.2.1)

This was considered in Joyce [80, §5.2]. It is equipped with a contravariant involution (−)∨,
meaning that [𝑎∨, 𝑏∨] = [𝑏, 𝑎]∨ for 𝑎, 𝑏 ∈ 𝕄(𝒳), which follows from Theorem 5.4.4.

We define a similar anti-symmetric operation ♡∶ 𝕄(𝒳) ⊗𝕄(𝒳 sd) → 𝕄(𝒳 sd) by

𝑎 ♡ 𝑚 = 𝑎 ⋄ 𝑚 − 𝑎∨ ⋄ 𝑚 , (7.2.2.2)

where ⋄ is the multiplication in the motivic Hall module. This does not define a Lie algebra

module, but a twisted module, in that it satisfies the relations

𝑎 ♡ 𝑚 = −𝑎∨ ♡𝑚 , (7.2.2.3)

𝑎 ♡ (𝑏 ♡ 𝑚) − 𝑏 ♡ (𝑎 ♡ 𝑚) = [𝑎, 𝑏] ♡ 𝑚 − [𝑎∨, 𝑏] ♡ 𝑚 . (7.2.2.4)

We see (7.2.2.4) as a Jacobi identity twisted by the contravariant involution of the Lie algebra,

giving the extra term [𝑎∨, 𝑏] ♡ 𝑚.

Note that over ℚ, a twisted module in this sense is equivalent to a usual module for the

Lie subalgebra consisting of elements 𝑎 with 𝑎∨ = −𝑎, with the action 𝑎 ⋅ 𝑚 = (1/2)(𝑎 ♡ 𝑚).

7.2.3. Theorem. The relations (7.1.3.3)–(7.1.3.4) can be written only using the Lie bracket [−, −]
and the operation ♡, without using the products ∗ or ⋄.
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More precisely, using the notations of Theorem 7.1.3, we have the relations

𝜖𝛼(𝜏−) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝑈̃ (𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ [… [[𝜖𝛼1(𝜏+), 𝜖𝛼2(𝜏+)],… ], 𝜖𝛼𝑛(𝜏+)] , (7.2.3.1)

𝜖sd𝜃 (𝜏−) = ∑
𝑛 ⩾ 0; 𝑚1, … ,𝑚𝑛 > 0;
𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ∈ π0(𝒳) ∖ {0}; 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = (𝛼1,1 + 𝛼∨

1,1 +⋯+ 𝛼1,𝑚1 + 𝛼∨
1,𝑚1) +⋯ + (𝛼𝑛,1 + 𝛼∨

𝑛,1 +⋯+ 𝛼𝑛,𝑚𝑛 + 𝛼∨
𝑛,𝑚𝑛 ) + 𝜌

𝑈̃ sd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜏+, 𝜏−) ⋅ (7.2.3.2)

[[𝜖𝛼1,1(𝜏+),… ], 𝜖𝛼1,𝑚1 (𝜏+)] ♡⋯♡ [[𝜖𝛼𝑛,1(𝜏+),… ], 𝜖𝛼𝑛,𝑚𝑛 (𝜏+)] ♡ 𝜖sd𝜌 (𝜏+) ,

where 𝑈̃ (…) and 𝑈̃ sd(…) are certain combinatorial coefficients, whose choices are not unique.

Here, the formulae (7.2.3.1)–(7.2.3.2) are just (7.1.3.3)–(7.1.3.4) with the terms grouped dif-

ferently, and this theorem is essentially a combinatorial property of the coefficients 𝑈(…)
and 𝑈 sd(…) stating that such regrouping is always possible. The non-uniqueness of the coef-

ficients is due to relations in the Lie brackets and the twisted module operation, such as the

Jacobi identity and (7.2.2.3)–(7.2.2.4).

The linear case (7.2.3.1) was shown in Joyce [83, Theorem 5.4]. The self-dual case (7.2.3.2)

is a main result of this thesis, and its proof will be given in Appendix C.

7.3 Wall-crossing for Donaldson–Thomas invariants

7.3.1. In this section, we prove wall-crossing formulae for our self-dual Donaldson–Thomas

invariants defined in §5.6 and §6.3, using the wall-crossing formulae for epsilon motives estab-

lished in Theorems 7.1.3 and 7.2.3. A key ingredient is themotivic integral identity for Behrend

functions, which we discuss in §7.4 below, generalizing the integral identities in the linear case

of Kontsevich and Soibelman [97, Conjecture 4], proved by Lê [101], and Joyce and Song [87,

Theorem 5.11].

Throughout, let 𝐾 be an algebraically closed field of characteristic 0, and let 𝒳 be a self-

dual (−1)-shifted symplectic linear stack over 𝐾 , as in §3.7.2. We further assume that the

classical truncation 𝒳cl is Nisnevich locally fundamental, as in §6.2.2.

7.3.2. Theorem. Let 𝜏+, 𝜏−, 𝜏0 be permissible self-dual stability conditions on𝒳 , with 𝜏0 domin-
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ating both 𝜏+ and 𝜏−. Then for any 𝛼 ∈ 𝜋0(𝒳) and 𝜃 ∈ 𝜋0(𝒳 sd), we have the wall-crossing
formulae

DT𝛼(𝜏−) = ∑
𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝑈̃ (𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ ℓ(𝛼1, … , 𝛼𝑛) ⋅ DT𝛼1(𝜏+)⋯DT𝛼𝑛(𝜏+) ,
(7.3.2.1)

DTsd
𝜃 (𝜏−) = ∑

𝑛 ⩾ 0; 𝑚1, … ,𝑚𝑛 > 0;
𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ∈ π0(𝒳) ∖ {0}; 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = (𝛼1,1 + 𝛼∨

1,1 +⋯+ 𝛼1,𝑚1 + 𝛼∨
1,𝑚1) +⋯ + (𝛼𝑛,1 + 𝛼∨

𝑛,1 +⋯+ 𝛼𝑛,𝑚𝑛 + 𝛼∨
𝑛,𝑚𝑛 ) + 𝜌

𝑈̃ sd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜏+, 𝜏−) ⋅ (7.3.2.2)

ℓsd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜌) ⋅
(DT𝛼1,1(𝜏+)⋯DT𝛼1,𝑚1 (𝜏+))⋯(DT𝛼𝑛,1(𝜏+)⋯DT𝛼𝑛,𝑚𝑛 (𝜏+)) ⋅ DT

sd
𝜌 (𝜏+) ,

where the sums contain finitely many non-zero terms, the coefficients 𝑈̃ (…), 𝑈̃ sd(…) ∈ ℚ are

defined in Theorem 7.2.3, and the coefficients ℓ(…), ℓsd(…) ∈ ℤ are defined in §7.3.6 below.

If, moreover, 𝒳 is equipped with an orientation data 𝑜𝒳 or a self-dual orientation data

(𝑜𝒳 , 𝑜𝒳 sd), then we have the wall-crossing formulae

DTmot
𝛼 (𝜏−) = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ 𝜋0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛

𝑈̃ (𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ 𝐿(𝛼1, … , 𝛼𝑛) ⋅ DTmot
𝛼1 (𝜏+)⋯DTmot

𝛼𝑛 (𝜏+) ,
(7.3.2.3)

DTmot,sd
𝜃 (𝜏−) = ∑

𝑛 ⩾ 0; 𝑚1, … ,𝑚𝑛 > 0;
𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ∈ π0(𝒳) ∖ {0}; 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = (𝛼1,1 + 𝛼∨

1,1 +⋯+ 𝛼1,𝑚1 + 𝛼∨
1,𝑚1) +⋯ + (𝛼𝑛,1 + 𝛼∨

𝑛,1 +⋯+ 𝛼𝑛,𝑚𝑛 + 𝛼∨
𝑛,𝑚𝑛 ) + 𝜌

𝑈̃ sd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜏+, 𝜏−) ⋅ (7.3.2.4)

𝐿sd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜌) ⋅
(DTmot

𝛼1,1 (𝜏+)⋯DTmot
𝛼1,𝑚1 (𝜏+))⋯(DTmot

𝛼𝑛,1(𝜏+)⋯DTmot
𝛼𝑛,𝑚𝑛 (𝜏+)) ⋅ DT

mot,sd
𝜌 (𝜏+) ,

respectively, where the coefficients 𝐿(…), 𝐿sd(…) ∈ ℤ[𝕃±1/2] are defined in §7.3.6 below.

The theorem will be proved in §7.4.7, using various integral identities that we introduce

in the next section.

7.3.3. Symmetric stacks. The wall-crossing formulae in Theorem 7.3.2 provide a condition for

the Donaldson–Thomas invariants to be independent of the choice of the stability condition.

We say that a (−1)-shifted symplectic stack𝒳 is numerically symmetric, if every connected
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component of ℱilt(𝒳) has virtual dimension 0. See the author et al. [29, §4.3] for examples

of stacks satisfying this condition.

For example, if 𝒳 is a self-dual (−1)-shifted symplectic linear stack, then 𝒳 is numeric-

ally symmetric if and only if vdim𝒳+
𝛼,𝛽 = 0 for all 𝛼, 𝛽 ∈ π0(𝒳), and 𝒳 sd is numerically

symmetric if and only if vdim𝒳 sd,+
𝛼,𝜃 = 0 for all 𝛼 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd).

When𝒳 and𝒳 sd are numerically symmetric, the coefficients 𝐿(…), ℓ(…) are zero unless
𝑛 ⩽ 1, and the coefficients 𝐿sd(…), ℓsd(…) are zero unless 𝑛 = 0, which follow from their

definitions. This immediately implies the following:

7.3.4. Corollary. In the situation of Theorem 7.3.2, assume that 𝒳 and 𝒳 sd are numerically

symmetric. Then the relations (7.3.2.1)–(7.3.2.4) simplify to

DT𝛼(𝜏−) = DT𝛼(𝜏+) , DTsd
𝜃 (𝜏−) = DTsd

𝜃 (𝜏+) , (7.3.4.1)

DTmot
𝛼 (𝜏−) = DTmot

𝛼 (𝜏+) , DTmot,sd
𝜃 (𝜏−) = DTmot,sd

𝜃 (𝜏+) . (7.3.4.2)

In particular, if 𝒳 has quasi-compact connected components, then all the above invariants are

independent of the choice of the stability condition.

Here, the final claim follows from taking 𝜏0 and 𝜏+ to be the trivial stability condition,

which is permissible when 𝒳 has quasi-compact connected components.

The remaining part of this section is devoted to the proof of Theorem 7.3.2.

7.3.5. Lattice algebras and modules. Define

Λ𝒳 = ⨁
𝛼∈π0(𝒳)

𝕄̂μ̂(𝐾;ℚ) ⋅ 𝜆𝛼 , Λsd
𝒳 = ⨁

𝜃∈π0(𝒳 sd)
𝕄̂μ̂(𝐾;ℚ) ⋅ 𝜆sd

𝜃 ,

where 𝕄̂μ̂(𝐾;ℚ) is the ring of monodromic motives defined in §6.1.2. We define a product ∗
on Λ𝒳 , and a Λ𝒳 -module structure ⋄ on Λsd

𝒳 , by setting

𝜆𝛼 ∗ 𝜆𝛽 = 𝕃vdim𝒳+𝛼,𝛽/2

𝕃1/2 − 𝕃−1/2 ⋅ 𝜆𝛼+𝛽 , 𝜆𝛼 ⋄ 𝜆sd
𝜃 = 𝕃vdim𝒳 sd,+𝛼,𝜃 /2

𝕃1/2 − 𝕃−1/2 ⋅ 𝜆
sd
𝛼+𝜃+𝛼∨ (7.3.5.1)

for 𝛼, 𝛽 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd). The associativity of these operations follow from the
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relations

vdim𝒳+
𝛼,𝛽 + vdim𝒳+

𝛼+𝛽,𝛾 = vdim𝒳+
𝛼,𝛽,𝛾 = vdim𝒳+

𝛼,𝛽+𝛾 + vdim𝒳+
𝛽,𝛾 ,

vdim𝒳+
𝛼,𝛽 + vdim𝒳 sd,+

𝛼+𝛽,𝜃 = vdim𝒳 sd,+
𝛼,𝛽,𝜃 = vdim𝒳 sd,+

𝛼,𝛽+𝜃+𝛽∨ + vdim𝒳 sd,+
𝛽,𝜃 ,

which follow from the derived versions of the associativity diagrams (5.4.4.6) and (5.4.4.8).

The algebra Λ𝒳 is often called the quantum torus in the literature, such as in Kontsevich and

Soibelman [97, §6.2].

The map 𝜆𝛼 ↦ 𝜆𝛼∨ defines a contravariant involution (−)∨ of Λ𝒳 . We also write 𝑎♡𝑚 =
𝑎⋄𝑚−𝑎∨⋄𝑚 for 𝑎 ∈ Λ𝒳 and𝑚 ∈ Λsd

𝒳 , as in §7.2.2, which gives Λsd
𝒳 the structure of a twisted

module over the involutive Lie algebra Λ𝒳 , with the commutator Lie bracket.

We also define the numerical versions

Λ̄𝒳 = ⨁
𝛼∈π0(𝒳)

ℚ ⋅ 𝜆̄𝛼 , Λ̄sd
𝒳 = ⨁

𝜃∈π0(𝒳 sd)
ℚ ⋅ 𝜆̄sd

𝜃 ,

which are no longer equipped with algebra structures, but have a Lie bracket and a twisted

module operation ♡, respectively, given by

[𝜆̄𝛼 , 𝜆̄𝛽] = (−1)1+vdim𝒳+𝛼,𝛽 ⋅ vdim𝒳+
𝛼,𝛽 ⋅ 𝜆̄𝛼+𝛽 , (7.3.5.2)

𝜆̄𝛼 ♡ 𝜆̄sd
𝜃 = (−1)1+vdim𝒳 sd,+𝛼,𝜃 ⋅ vdim𝒳 sd,+

𝛼,𝜃 ⋅ 𝜆̄sd
𝛼+𝜃+𝛼∨ . (7.3.5.3)

By Lemma B.3.4 below, we have vdim𝒳+
𝛽,𝛼 = −vdim𝒳+

𝛼,𝛽 and vdim𝒳 sd,+
𝛼∨,𝜃 = −vdim𝒳 sd,+

𝛼,𝜃 ,

establishing (7.3.5.2) and (7.3.5.3) as limits of (7.3.5.1) as 𝕃1/2 → −1.

7.3.6. Coefficients. We can now define the coefficients 𝐿(…), 𝐿sd(…), etc., which appear

in (7.3.2.1).

For 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳), we record the coefficients of the Lie brackets in Λ𝒳 and Λ̄𝒳 as

[[… [𝜆𝛼1 , 𝜆𝛼2],… ], 𝜆𝛼𝑛] = 𝐿(𝛼1, … , 𝛼𝑛) ⋅ 𝜆𝛼1+⋯+𝛼𝑛 , (7.3.6.1)

[[… [𝜆̄𝛼1 , 𝜆̄𝛼2],… ], 𝜆̄𝛼𝑛] = ℓ(𝛼1, … , 𝛼𝑛) ⋅ 𝜆̄𝛼1+⋯+𝛼𝑛 , (7.3.6.2)

where 𝐿(𝛼1, … , 𝛼𝑛) ∈ ℤ[𝕃±1/2] and ℓ(𝛼1, … , 𝛼𝑛) ∈ ℤ.
Similarly, for 𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ∈ π0(𝒳) and 𝜌 ∈ π0(𝒳 sd), we also record
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the coefficients in

[[… [𝜆𝛼1,1 , 𝜆𝛼1,2],… ], 𝜆𝛼1,𝑚1 ] ♡⋯♡ [[… [𝜆𝛼𝑛,1 , 𝜆𝛼𝑛,2],… ], 𝜆𝛼𝑛,𝑚𝑛 ] ♡ 𝜆sd𝜌

= 𝐿sd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜌) ⋅ 𝜆sd𝛼1,1+𝛼∨1,1+⋯+𝛼𝑛,𝑚𝑛+𝛼∨𝑛,𝑚𝑛+𝜌 , (7.3.6.3)

[[… [𝜆̄𝛼1,1 , 𝜆̄𝛼1,2],… ], 𝜆̄𝛼1,𝑚1 ] ♡⋯♡ [[… [𝜆̄𝛼𝑛,1 , 𝜆̄𝛼𝑛,2],… ], 𝜆̄𝛼𝑛,𝑚𝑛 ] ♡ 𝜆̄sd𝜌

= ℓsd(𝛼1,1, … , 𝛼1,𝑚1 ;… ; 𝛼𝑛,1, … , 𝛼𝑛,𝑚𝑛 ; 𝜌) ⋅ 𝜆̄sd𝛼1,1+𝛼∨1,1+⋯+𝛼𝑛,𝑚𝑛+𝛼∨𝑛,𝑚𝑛+𝜌 , (7.3.6.4)

where 𝐿sd(…) ∈ ℤ[𝕃±1/2] and ℓsd(…) ∈ ℤ.
These coefficients only depend on the numbers vdim𝒳+

𝛼,𝛽 and vdim𝒳 sd,+
𝛼,𝜃 for 𝛼, 𝛽 ∈

π0(𝒳) and 𝜃 ∈ π0(𝒳 sd). They have straightforward explicit expressions, which we omit.

We have the relations ℓ(…) = 𝐿(…)|𝕃1/2=−1 and ℓsd(…) = 𝐿sd(…)|𝕃1/2=−1. Also, 𝐿(…)
and 𝐿sd(…) are symmetric Laurent polynomials in 𝕃1/2, in that they are invariant under the

transformation 𝕃1/2 ↦ 𝕃−1/2.

7.4 Integral identities

7.4.1. The motivic integral identity. A crucial ingredient in proving wall-crossing formulae

for Donaldson–Thomas invariants, Theorem 7.3.2, is the motivic integral identity for the mo-

tivic Behrend function, first conjectured by Kontsevich and Soibelman [97, Conjecture 4] in

the linear case, and proved by Lê [101] in that case.

For our applications in the orthosymplectic case, however, we will need the following

stronger and global version of the integral identity.

7.4.2. Theorem. Let𝒳 be an oriented (−1)-shifted symplectic stack over𝐾 , such that its classical

truncation is an algebraic stack that is Nisnevich locally fundamental in the sense of §6.2.2.

Consider the attractor correspondence

𝒢rad(𝒳) gr⟵ ℱilt(𝒳) ev⟶ 𝒳 (7.4.2.1)

as in §3.2.3. Then we have the identity

gr! ∘ ev∗(𝜈mot
𝒳 ) = 𝕃vdimℱilt(𝒳)/2 ⋅ 𝜈mot

𝒢rad(𝒳) (7.4.2.2)

in 𝕄̂μ̂(𝒢rad(𝒳)), where vdimℱilt(𝒳) is the virtual dimension of the derived stack dℱilt(𝒳),
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seen as a function π0(𝒢rad(𝒳)) ≃ π0(ℱilt(𝒳)) → ℤ.

Here, the statement of the theorem treats𝒳 as a classical stack via the classical truncation,

except when taking the stack dℱilt(𝒳). The proof of this theorem is deferred to Appendix B.

7.4.3. We will use Theorem 7.4.2 to prove Theorem 7.3.2 in the following way. Let 𝒳 be as

in Theorem 7.3.2, and suppose that we are given a self-dual orientation data (𝑜𝒳 , 𝑜𝒳 sd) on 𝒳 .

Then Theorem 7.4.2 implies that

𝜈mot
𝒳 ⊠ 𝜈mot

𝒳 = 𝕃−vdim𝒳+𝛼,𝛽/2 ⋅ gr! ∘ ev∗(𝜈mot
𝒳 ) in 𝕄̂μ̂(𝒳𝛼 × 𝒳𝛽) , (7.4.3.1)

𝜈mot
𝒳 ⊠ 𝜈mot

𝒳 sd = 𝕃−vdim𝒳 sd,+𝛼,𝜃 /2 ⋅ gr! ∘ ev∗(𝜈mot
𝒳 sd) in 𝕄̂μ̂(𝒳𝛼 × 𝒳 sd

𝜃 ) , (7.4.3.2)

where 𝛼, 𝛽 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd), and the compositions are through 𝕄̂μ̂(𝒳+
𝛼,𝛽) and

𝕄̂μ̂(𝒳 sd,+
𝛼,𝜃 ), respectively. These identities imply the relations

(∫𝒳𝛼
𝑎 ⋅ 𝜈mot

𝒳 ) ⋅ (∫𝒳𝛽
𝑏 ⋅ 𝜈mot

𝒳 ) = 𝕃−vdim𝒳+𝛼,𝛽/2 ⋅ ∫𝒳𝛼+𝛽
(𝑎 ∗ 𝑏) ⋅ 𝜈mot

𝒳 , (7.4.3.3)

(∫𝒳𝛼
𝑎 ⋅ 𝜈mot

𝒳 sd) ⋅ (∫𝒳 sd
𝜃
𝑚 ⋅ 𝜈mot

𝒳 sd) = 𝕃−vdim𝒳 sd,+𝛼,𝜃 /2 ⋅ ∫𝒳 sd
𝛼+𝜃+𝛼∨

(𝑎 ⋄ 𝑚) ⋅ 𝜈mot
𝒳 sd , (7.4.3.4)

where 𝑎 ∈ 𝕄qc(𝒳𝛼 ; ℚ), 𝑏 ∈ 𝕄qc(𝒳𝛽 ; ℚ), and 𝑚 ∈ 𝕄qc(𝒳 sd
𝜃 ; ℚ), and the subscripts ‘qc’

indicate quasi-compactly supported motives. These follow from identifying both sides of each

relation with the integrals

𝕃−vdim𝒳+𝛼,𝛽/2 ⋅ ∫𝒳+𝛼,𝛽
gr∗(𝑎 ⊠ 𝑏) ⋅ ev∗(𝜈mot

𝒳 ) ,

𝕃−vdim𝒳 sd,+𝛼,𝜃 /2 ⋅ ∫𝒳 sd,+𝛼,𝜃
gr∗(𝑎 ⊠ 𝑚) ⋅ ev∗(𝜈mot

𝒳 sd) ,

respectively, using the projection formula (5.2.3.1). The relation (7.4.3.3) was first described by

Kontsevich and Soibelman [97, Theorem 8].

7.4.4. The numeric integral identity. To prove the numeric wall-crossing formulae (7.3.2.1)–

(7.3.2.2), wewill need a corollary of Theorem 7.4.2, which is an integral identity for the numeric

Behrend functions.

We first introduce a notation used in the statement of the corollary. For a graded point
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𝛾 ∈ 𝒢rad(𝒳)(𝐾), write

ℙ(gr−1(𝛾)) = (∗/𝔾m ×
𝒢rad(𝒳)

ℱilt(𝒳)) \ {sf(𝛾)} ,

where the map ∗/𝔾m → 𝒢rad(𝒳) is given by the tautological 𝔾m-action on 𝛾 . The 𝐾 -point

sf(𝛾) is closed in the fibre product, and {sf(𝛾)} denotes the corresponding closed substack.

The spaceℙ(gr−1(𝛾)) can be seen as the projectivized space of filtrations of a given associated
graded point.

7.4.5. Theorem. Let𝒳 be an oriented (−1)-shifted symplectic stack over𝐾 , such that its classical

truncation is an algebraic stack that is étale locally fundamental in the sense of §6.2.2.

Let 𝛾 ∈ 𝒢rad(𝒳)(𝐾) be a graded point, and let ̄𝛾 be its opposite graded point, given by

precomposing with the morphism (−)−1 ∶ ∗/𝔾m → ∗/𝔾m.

Then we have the identities

𝜈𝒳 (tot(𝛾)) = (−1)rank[0,1](𝕃ℱilt(𝒳)|sf(𝛾))−rank[0,1](𝕃ℱilt(𝒳)|sf( ̄𝛾 )) ⋅ 𝜈𝒢rad(𝒳)(𝛾) , (7.4.5.1)

∫
𝜑∈ℙ(gr−1(𝛾))

𝜈𝒳 (ev(𝜑)) 𝑑𝜒 − ∫
𝜑∈ℙ(gr−1( ̄𝛾 ))

𝜈𝒳 (ev(𝜑)) 𝑑𝜒

= (dimH0(𝕃ℱilt(𝒳)|sf(𝛾)) − dimH0(𝕃ℱilt(𝒳)|sf( ̄𝛾 ))) ⋅ 𝜈𝒳 (tot(𝛾)) , (7.4.5.2)

where rank[0,1] = dimH0 − dimH1.

This theorem is a generalization of Joyce and Song [87, Theorem 5.11], who considered

the case when 𝒳 is the moduli stack of objects in a 3-Calabi–Yau abelian category. The proof

is deferred to Appendix B.

7.4.6. In the setting of Theorem 7.3.2, we can also obtain from Theorem 7.4.5 numerical in-

tegral relations analogous to (7.4.3.3)–(7.4.3.4),

∫𝒳𝛼+𝛽
(1 − 𝕃) ⋅ [𝑎, 𝑏] ⋅ 𝜈𝒳 𝑑𝜒 = (−1)1+vdim𝒳+𝛼,𝛽 ⋅ vdim𝒳+

𝛼,𝛽 ⋅

(∫𝒳𝛼
(1 − 𝕃) ⋅ 𝑎 ⋅ 𝜈𝒳 𝑑𝜒) ⋅ (∫𝒳𝛽

(1 − 𝕃) ⋅ 𝑏 ⋅ 𝜈𝒳 𝑑𝜒) , (7.4.6.1)

∫𝒳 sd
𝛼+𝜃+𝛼∨

(𝑎 ♡ 𝑚) ⋅ 𝜈𝒳 sd 𝑑𝜒 = (−1)1+vdim𝒳 sd,+𝛼,𝜃 ⋅ vdim𝒳 sd,+
𝛼,𝜃 ⋅

(∫𝒳𝛼
(1 − 𝕃) ⋅ 𝑎 ⋅ 𝜈𝒳 𝑑𝜒) ⋅ (∫𝒳 sd

𝜃
𝑚 ⋅ 𝜈𝒳 sd 𝑑𝜒) , (7.4.6.2)
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provided that the motives 𝑎, 𝑏,𝑚 are chosen so that the integrals on the right-hand sides are

finite, that is, they lie in 𝕄̂μ̂,∘(𝐾;𝐴) as in §6.1.3 before taking the Euler characteristics. These

identities do not require orientations on𝒳 or𝒳 sd. The identity (7.4.6.1) was proved by Joyce

and Song [87, Theorem 5.14] in the setting of Calabi–Yau threefolds.

To prove them, we use a similar argument as in §7.4.1. Namely, for (7.4.6.1), we identify

the left-hand side with

𝜒((1 − 𝕃)2 ⋅ (−∫ℙ(𝒳+𝛼,𝛽)
gr∗(𝑎 ⊠ 𝑏) ⋅ ev∗(𝜈𝒳 ) +∫ℙ(𝒳+𝛽,𝛼 )

̄gr∗(𝑎 ⊠ 𝑏) ⋅ ̄ev∗(𝜈𝒳 )))

+∫𝒳𝛼×𝒳𝛽
(1 − 𝕃) ⋅ (𝑎 ⊠ 𝑏) ⋅ (𝕃−ℎ1(𝕃gr) − 𝕃−ℎ1(𝕃 ̄gr)) ⋅ ⊕∗(𝜈𝒳 ) 𝑑𝜒 , (7.4.6.3)

where ℙ(𝒳+
𝛼,𝛽) = (𝒳+

𝛼,𝛽 ∖ sf(𝒳𝛼 × 𝒳𝛽))/𝔾m, with the 𝔾m-action given by choosing an

identification of 𝒳+
𝛼,𝛽 with a component of ℱilt(𝒳), and ℙ(𝒳+

𝛽,𝛼) is defined similarly, using

the opposite component. We denote by ̄gr, ̄ev the maps gr, ev for𝒳+
𝛽,𝛼 , and by 𝕃gr the relative

cotangent complex of𝒳+
𝛼,𝛽 over𝒳𝛼 ×𝒳𝛽 . We regard ℎ1(𝕃gr) = dimH1(𝕃gr) as a constructible

function on 𝒳+
𝛼,𝛽 , which can be pulled back to 𝒳𝛼 × 𝒳𝛽 . The factors 𝕃−ℎ1(𝕃gr) and 𝕃−ℎ1(𝕃 ̄gr)

are due to the difference of stabilizer groups in 𝒳+
𝛼,𝛽 and 𝒳𝛼 × 𝒳𝛽 . Applying (7.4.5.2) turns

(7.4.6.3) into

∫𝒳𝛼×𝒳𝛽
(1 − 𝕃)2 ⋅ (𝑎 ⊠ 𝑏) ⋅ (ℎ1(𝕃gr) − ℎ0(𝕃gr) + ℎ0(𝕃 ̄gr) − ℎ1(𝕃 ̄gr)) ⋅ ⊕∗(𝜈𝒳 ) 𝑑𝜒 , (7.4.6.4)

where we also replaced 𝕃−ℎ1(𝕃gr) − 𝕃−ℎ1(𝕃 ̄gr) by (1 − 𝕃) ⋅ (ℎ1(𝕃gr) − ℎ1(𝕃 ̄gr)), as they are

equal modulo (1 − 𝕃)2, so this will not affect the integral. By Lemma B.3.4, the alternating

sum in (7.4.6.4) is equal to −vdim𝒳+
𝛼,𝛽 . Finally, by (7.4.5.1), we have ⊕∗(𝜈𝒳 ) = (−1)vdim𝒳+𝛼,𝛽 ⋅

(𝜈𝒳 ⊠ 𝜈𝒳 ), which identifies (7.4.6.4) with the right-hand side of (7.4.6.1).

The identity (7.4.6.2) can be proved analogously.

7.4.7. Proof of Theorem 7.3.2. Consider the integration maps

(𝕃1/2 − 𝕃−1/2) ⋅∫𝒳 (−) ⋅ 𝜈mot
𝒳 ∶ 𝕄qc(𝒳;ℚ) ⟶ Λ𝒳 ,

∫𝒳 sd
(−) ⋅ 𝜈mot

𝒳 sd ∶ 𝕄qc(𝒳 sd; ℚ) ⟶ Λsd
𝒳 ,

where the generators 𝜆𝛼 and 𝜆sd
𝜃 record which components the motives are supported on. The

relations (7.4.3.3)–(7.4.3.4) imply that these maps are algebra and module homomorphisms.
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Similarly, the relations (7.4.6.1)–(7.4.6.2) imply that the integration maps

∫𝒳 (1 − 𝕃) ⋅ (−) ⋅ 𝜈𝒳 𝑑𝜒 ∶ 𝕄∗
qc(𝒳;ℚ) ⟶ Λ̄𝒳 ,

∫𝒳 sd
(−) ⋅ 𝜈𝒳 sd ∶ 𝕄∗

qc(𝒳 sd; ℚ) ⟶ Λ̄sd
𝒳 ,

are Lie algebra and twisted module homomorphisms, where the superscripts ∗ indicate sub-

spaces of motives for which the integrals are finite. It follows from (7.4.6.1)–(7.4.6.2) that these

subspaces are a Lie subalgebra and a sub-twisted module for this subalgebra, respectively.

The theorem is now a direct consequence of Theorem 7.2.3, by applying the above integ-

ration homomorphisms to the relations (7.2.3.1)–(7.2.3.2).

7.5 Wall-crossing in derived categories

7.5.1. We now discuss wall-crossing formulae for linear and orthosymplectic Donaldson–

Thomas invariants when changing Bridgeland stability conditions in the derived category.

These wall-crossing formulae are similar to those in Theorem 7.3.2, but since changing

the Bridgeland stability condition also changes the heart of the derived category, the theorem

does not directly apply. However, we show that if the stability condition is not changed by too

much, as measured by the metric on the space of stability conditions, then the wall-crossing

formulae still hold.

7.5.2. The setting. Throughout, we fix an algebraically closed field 𝐾 of characteristic 0.
Let 𝒞 be a 𝐾 -linear dg-category of finite type, and let 𝒳̄ be the derived moduli stack of

objects in 𝒞 , as in Toën and Vaquié [151, Theorem 3.6]. We assume that 𝒞 is equipped with

a self-dual structure, which induces an involution of 𝒳̄ .

We fix a surjection𝐾(𝒞) → Γ to a finitely generated free abelian group Γ, as in §2.4.2, and

consider the space StabΓ(𝒞) of Bridgeland stability conditions as in §2.4.3. It is equipped with

an involution as in §2.4.4.

We assume given an open subset Stab∘Γ(𝒞 ) ⊂ StabΓ(𝒞 ), invariant under the involution,

satisfying the following conditions:

• For any stability condition 𝜏 = (𝑍, 𝒫 ) ∈ Stab∘Γ(𝒞 ), and any interval 𝐽 ⊂ ℝ such that

110



𝐽 ∩ (𝐽 + 1) = ∅, there exists an open substack

𝒳(𝜏; 𝐽) ⊂ 𝒳̄ (7.5.2.1)

consisting of objects in 𝒫 (𝐽), which is a derived linear stack in the sense of §3.7.2.

Moreover, 𝜏 defines a permissible stability condition on 𝒳(𝜏; 𝐽) in the sense of §3.5.

• Support property. For any 𝑟 ∈ ℝ>0, there are only finitely many classes 𝛼 ∈ Γ such that

there exist 𝜏 -semistable objects in 𝒞 of class 𝛼 , and |𝑍(𝛼)| ⩽ 𝑟 .

Denote by Stab∘,sdΓ (𝒞) ⊂ Stab∘Γ(𝒞 ) the fixed locus of the involution, which is a real analytic

manifold.

In particular, if 𝜏 ∈ Stab∘,sdΓ (𝒞 ), and 𝐽 ⊂ ℝ is an interval with 𝐽 = −𝐽 and 𝐽 ∩(𝐽 +1) = ∅,
then 𝒳(𝜏; 𝐽) is a self-dual derived linear stack.

Finally, we assume that 𝒞 is equipped with a Calabi–Yau structure of degree 3, preserved
by the self-dual structure. By Brav and Dyckerhoff [21, Theorem 5.6], this also defines a (−1)-
shifted symplectic structure on 𝒳̄ , preserved by its involution, establishing the derived linear

stacks 𝒳(𝜏; 𝐽) as (−1)-shifted symplectic linear stacks.

In §8.3 and §8.4 below, we will verify these conditions for some choices of𝒞 and Stab∘Γ(𝒞).

7.5.3. Theorem. Let 𝒞 be as above, and let 𝜏 = (𝑍, 𝒫 ), 𝜏̃ = (𝑍̃ , ̃𝒫 ) ∈ Stab∘Γ(𝒞) be Bridgeland
stability conditions.

(i) If 𝜏 , 𝜏̃ can be connected by a path of length < 1/4 in Stab∘Γ(𝒞), then for any class 𝛼 ∈ Γ
with 𝑍(𝛼) ≠ 0, the wall-crossing formula (7.3.2.1) holds.

(ii) If 𝜏 , 𝜏̃ ∈ Stab∘,sdΓ (𝒞 ), and they can be connected by a path of length < 1/4 in Stab∘,sdΓ (𝒞),
then for any class 𝛼 ∈ Γsd with 𝑍(𝛼) ∈ ℝ>0, the wall-crossing formula (7.3.2.2) holds.

Here, the length of a path is defined as the supremum of sums of distances over all subdivisions.

In (7.3.2.1)–(7.3.2.2), we use 𝜏 , 𝜏̃ in place of 𝜏+, 𝜏−. The sets π0(𝒳), π0(𝒳 sd) in the formulae are

defined using 𝒳 = 𝒳(𝜏; ]𝑡 − 1/4, 𝑡 + 1/4[), where 𝑡 is a phase of 𝑍(𝛼) in (i) or 𝑡 = 0 in (ii).

The coefficients 𝑈̃ (…), 𝑈̃ sd(…) are defined using the total order on phases in ]𝑡 − 1/2, 𝑡 + 1/2[.
Moreover, if we are given an orientation data on 𝒳(𝜏; ]𝑡 − 1/2, 𝑡 + 1/2[), or a self-dual

orientation data on𝒳(𝜏; ]−1/2, 1/2[), respectively, then (i)–(ii) also hold for the motivic versions

(7.3.2.3)–(7.3.2.4), where 𝛼 has phase 𝑡 .
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Proof. To avoid repetition, we prove (i)–(ii) using a common argument.

We first prove the following claim: For fixed 𝜏 and a fixed class 𝛼 or 𝜃 , there exists 𝛿 > 0
such that the wall-crossing formulae hold whenever 𝑑(𝜏 , 𝜏̃ ) < 𝛿 , with the sets π0(𝒳), π0(𝒳 sd)
defined using 𝒳 = 𝒳(𝜏; 𝑡), and we may take 𝜏+, 𝜏− in the formulae to be either 𝜏 , 𝜏̃ or 𝜏̃ , 𝜏 .

Write 𝒜 = 𝒫 (𝑡). Let 𝐾 ⊂ Γ be the set of classes of 𝜏 -semistable objects in 𝒞 , and 𝐶 ⊂ 𝐾
the set of classes realized by objects in 𝒜 .

We choose 0 < 𝛿 < 1/8 such that 𝐾 ∩ 𝑍−1(𝑉4𝛿(e2𝛿 ⋅ 𝑍(𝛼))) ⊂ 𝐶 , where

𝑉𝑢(𝑧) = {𝑟eπi𝜙 ∣ 0 ⩽ 𝑟 ⩽ |𝑧| , |𝜙| ⩽ 𝑢} ⊂ ℂ .

If 𝛽 ∈ Γ is the class of a 𝜏 -Harder–Narasimhan factor of a 𝜏̃ -semistable object of class 𝛼 , then
𝑍(𝛽)must lie in 𝑉2𝛿(𝑍(𝛼)). By the choice of 𝛿 , all such classes 𝛽 have phase 𝑡 , and are hence
equal to 𝛼 . This implies that all 𝜏̃ -semistable objects of class 𝛼 are 𝜏 -semistable and are in 𝒜 .

Similarly, we may assume that all 𝜏̃ -semistable objects with phase in [𝑡 − 𝛿, 𝑡 + 𝛿] and
norm ⩽ e𝛿 ⋅ |𝑍(𝛼)| are in 𝒜 . Indeed, such objects have 𝜏 -phase in [𝑡 − 2𝛿, 𝑡 + 2𝛿] and 𝜏 -norm
⩽ e2𝛿 ⋅ |𝑍(𝛼)|, and this property holds by the choice of 𝛿 .

It follows that for any object in𝒜 of class 𝛼 , its 𝜏̃ -Harder–Narasimhan factors also belong

to 𝒜 . In other words, 𝜏̃ almost defines a stability condition on 𝒳(𝜏; 𝑡) in the sense of §3.5.4,

except that the Θ-stratification is only defined on 𝒳(𝜏; 𝑡)𝛽 for classes 𝛽 ∈ 𝐶 with |𝑍(𝛽)| ⩽
|𝑍(𝛼)|. However, this is enough to prove wall-crossing for 𝛼 , as the other classes are irrelevant
in the argument. The claim thus follows from Theorem 7.3.2, where 𝜏 corresponds to trivial

stability on 𝒳(𝜏; 𝑡).
We now turn to the original statement of the theorem. Choose a path (𝜏𝑠 = (𝑍𝑠 , 𝒫𝑠))𝑠∈[0,1]

of length ℓ < 1/4, with 𝜏0 = 𝜏 and 𝜏1 = 𝜏̃ . By the compactness of [0, 1], our claim implies that

we can choose 0 = 𝑠0 < ⋯ < 𝑠𝑛 = 1 such that there are wall-crossing formulae between each

𝜏𝑠𝑖 and 𝜏𝑠𝑖+1 . We may thus apply (7.3.2.1), etc., to express DT𝛼(𝜏𝑠0), etc., in terms of invariants

for 𝜏𝑠1 , and so on, finally in terms of invariants for 𝜏𝑠𝑛 = 𝜏̃ . In each step, the involved invariants
DT𝛽(𝜏𝑠𝑖) must satisfy that 𝑍(𝛽) lies in the bounded region

{𝑟eπi𝜙 ∣ 𝑟 ⩾ 0 , |𝜙 − 𝑡| ⩽ ℓ} ∩ {𝑍(𝛼) − 𝑟eπi𝜙 ∣ 𝑟 ⩾ 0 , |𝜙 − 𝑡| ⩽ ℓ} ⊂ ℂ ,

so that the sums (7.3.2.1), etc., can not only be written using some π0(𝒳(𝜏𝑠𝑖 ; 𝑡𝑖)) and its self-
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dual version, as in the argument above, but also using the larger set π0(𝒳(𝜏 ; ]𝑡 − 1/2, 𝑡 +
1/2[)) and its self-dual version, where the coefficients 𝑈̃ (…), 𝑈̃ sd(…) are zero for the newly

introduced terms. The support property of 𝜏 ensures that only finitely many non-zero terms

appear in each step.

It remains to prove that the coefficients 𝑈̃ (…), 𝑈̃ sd(…) respect composition of wall-

crossing formulae, so that the wall-crossing formulae obtained from the above process are

equivalent to (7.3.2.1), etc., from 𝜏 directly to 𝜏̃ . This follows from the fact that the coefficients

𝑆(…), 𝑆sd(…) respect composition, which was proved in Lemma 7.1.4.
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Chapter 8

Applications

In this chapter, we study orthosymplectic Donaldson–Thomas theory in several concrete ex-

amples, based on the settings introduced in Chapter 4.

In §8.1, we study Donaldson–Thomas invariants counting self-dual representations of self-

dual quivers with potential; in §8.2 and §8.3, we study orthosymplectic Donaldson–Thomas

invariants for curves and threefolds. Finally, §8.4, we define a version of Vafa–Witten invari-

ants counting orthosymplectic Higgs complexes on surfaces.

8.1 Self-dual quivers

8.1.1. In this section, we continue the discussion of self-dual quivers and their self-dual repres-

entations from §4.1, and study their orthosymplectic Donaldson–Thomas invariants. We also

provide an explicit algorithm that computes these invariants for any self-dual quiver, provided

that the potential is zero.

8.1.2. Donaldson–Thomas invariants. For a quiver 𝑄, a potential𝑊 , a slope function 𝜏 on 𝑄,

and a dimension vector 𝛼 ∈ ℕ𝑄0 ∖ {0}, we have the Donaldson–Thomas invariants

DT𝛼(𝜏) ∈ ℚ , DTmot
𝛼 (𝜏) ∈ 𝕄̂μ̂(𝐾;ℚ) ,

defined as in §5.6.3 and §6.3.1, for the (−1)-shifted symplectic linear stack 𝒳𝑄,𝑊 . These in-

variants were studied by Joyce and Song [87], Kontsevich and Soibelman [97], and others.

When𝑄 is equipped with a self-dual structure and𝑊, 𝜏 are self-dual, we have the self-dual
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Donaldson–Thomas invariants

DTsd
𝜃 (𝜏) ∈ ℚ , DTmot,sd

𝜃 (𝜏) ∈ 𝕄̂μ̂(𝐾;ℚ) ,

defined as in §5.6.4 and §6.3.1 for the self-dual (−1)-shifted symplectic linear stack 𝒳𝑄,𝑊 .

These are new constructions in this thesis.

When the potential𝑊 is zero, we have𝒳𝑄,0 ≃ T∗[−1]𝒳𝑄 as in §4.1.7, and the discussions

in §5.6.5 and §6.3.2 apply, which provide more straightforward formulae for the Donaldson–

Thomas invariants.

8.1.3. Wall-crossing formulae. For a self-dual quiver 𝑄 with a self-dual potential 𝑊 , The-

orem 7.3.2 applies to the self-dual (−1)-shifted symplectic linear stack 𝒳𝑄,𝑊 , proving wall-

crossing formulae for the DT invariants defined in §8.1.2. We are allowed to take 𝜏+, 𝜏− in the

theorem to be any two self-dual slope functions, since we can take 𝜏0 in the theorem to be the

trivial stability condition, which is permissible.

8.1.4. An algorithm for computing Donaldson–Thomas invariants. For a self-dual quiver 𝑄,

in the case when the potential 𝑊 is zero, we describe an algorithm for computing all the

invariants DT𝛼(𝜏), DTmot
𝛼 (𝜏), DT𝜃(𝜏), and DTmot

𝜃 (𝜏), for any self-dual slope function 𝜏 .
First, we compute the motives of𝒳𝛼 = 𝑉𝛼/𝐺𝛼 and𝒳 sd

𝜃 = 𝑉 sd
𝜃 /𝐺sd

𝜃 , as in (4.1.5.1)–(4.1.5.2),

in 𝕄(𝐾). We use the relation (5.2.6.1) for the vector bundles 𝒳𝛼 → ∗/𝐺𝛼 and 𝒳 sd
𝜃 → ∗/𝐺sd

𝜃 ,

and the motives

[∗/GL(𝑛)] =
𝑛−1
∏
𝑖=0

1
𝕃𝑛 − 𝕃𝑖 , (8.1.4.1)

[∗/O(2𝑛)] = 𝕃𝑛 ⋅
𝑛−1
∏
𝑖=0

1
𝕃2𝑛 − 𝕃2𝑖 , (8.1.4.2)

[∗/O(2𝑛 + 1)] = [∗/Sp(2𝑛)] = 𝕃−𝑛 ⋅
𝑛−1
∏
𝑖=0

1
𝕃2𝑛 − 𝕃2𝑖 , (8.1.4.3)

where the linear and symplectic cases follow from Joyce [82, Theorem 4.10], as these are spe-

cial groups in the sense there, while the orthogonal cases are due to Dhillon and Young [51,

Theorem 3.7]. We then have

∫𝒳𝛼
𝜈mot
𝒳 = 𝕃−(dim𝑉𝛼−dim𝐺𝛼 )/2 ⋅ [𝒳𝛼] = 𝕃(dim𝑉𝛼+dim𝐺𝛼 )/2 ⋅ [∗/𝐺𝛼] , (8.1.4.4)
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∫𝒳 sd
𝜃
𝜈mot
𝒳 sd = 𝕃−(dim𝑉 sd

𝜃 −dim𝐺sd
𝜃 )/2 ⋅ [𝒳 sd

𝜃 ] = 𝕃(dim𝑉 sd
𝜃 +dim𝐺sd

𝜃 )/2 ⋅ [∗/𝐺sd
𝜃 ] , (8.1.4.5)

where [∗/𝐺𝛼] and [∗/𝐺sd
𝜃 ] are products of the rational functions in (8.1.4.1)–(8.1.4.3).

Next, we compute the invariants DTmot
𝛼 (0) and DTsd,mot

𝜃 (0) for the trivial slope function 0.
These can be obtained from (6.3.2.1)–(6.3.2.2) by substituting in (5.5.2.1) and (5.5.3.1), then

using the relations (7.4.3.3)–(7.4.3.4) to reduce to the known integrals (8.1.4.4)–(8.1.4.5). This

process also shows that DTmot
𝛼 (0) andDTsd,mot

𝜃 (0) are rational functions in𝕃1/2, and evaluating

them at 𝕃1/2 = −1 gives the numerical invariants DT𝛼(0) and DTsd
𝜃 (0).

Finally, for a general self-dual slope function 𝜏 , we may apply the wall-crossing formulae

(7.3.2.1)–(7.3.2.4) to compute the invariants DT𝛼(𝜏), DTsd
𝜃 (𝜏), DTmot

𝛼 (𝜏), and DTsd,mot
𝜃 (𝜏) from

the case when 𝜏 = 0, which is already known.

As an alternative to the final step, we may first compute the integrals ∫𝒳 ss𝛼 (𝜏) 𝜈mot
𝒳 and

∫𝒳 sd,ss𝜃 (𝜏) 𝜈mot
𝒳 sd using the relations (7.1.3.11)–(7.1.3.12), together with (7.4.3.3)–(7.4.3.4) to reduce

to the known integrals (8.1.4.4)–(8.1.4.5), then repeat the process above to obtain the invari-

ants DTmot
𝛼 (𝜏) and DTsd,mot

𝜃 (𝜏), which are rational functions in 𝕃1/2. We then evaluate them

at 𝕃1/2 = −1 to obtain the numerical invariants DT𝛼(𝜏) and DTsd
𝜃 (𝜏).

The author has implemented the above algorithm using a computer program, and some

numerical results are presented below.

8.1.5. Example. The point quiver. Consider the point quiver 𝑄 = (•), with a single vertex and
no edges, with the trivial slope function 𝜏 = 0. There are two self-dual structures on 𝑄, with

the signs +1 and −1 assigned to the vertex, respectively.

We have the moduli stack 𝒳𝑄 = ∐𝑛⩾0 ∗/GL(𝑛), and its fixed loci 𝒳 sd𝑄 = ∐𝑛⩾0 ∗/O(𝑛)
or ∐𝑛⩾0 ∗/Sp(2𝑛), depending on the sign of the vertex. As in Joyce and Song [87, Ex-

ample 7.19], the usual Donaldson–Thomas invariants of 𝑄 are given by

DTA𝑛−1 =
1
𝑛2

for all 𝑛 ⩾ 1, where the subscript A𝑛−1 refers to the Dynkin type of GL(𝑛).
Based on explicit computation following the algorithm in §8.1.4, we conjecture that

DTsd
B𝑛 = DTsd

C𝑛 = (−1)𝑛 (−1/4𝑛 ) , DTsd
D𝑛 = (−1)𝑛 ( 1/4𝑛 ) ,
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where the subscripts B𝑛, C𝑛, andD𝑛 refer to the Dynkin types of O(2𝑛+1), Sp(2𝑛), and O(2𝑛),
respectively. Equivalently, we have the generating series

∑
𝑛⩾0

𝑞𝑛 ⋅ DTsd
B𝑛 = ∑

𝑛⩾0
𝑞𝑛 ⋅ DTsd

C𝑛 = (1 − 𝑞)−1/4 , ∑
𝑛⩾0

𝑞𝑛 ⋅ DTsd
D𝑛 = (1 − 𝑞)1/4 .

We expect to prove this conjecture in a future paper [32], and we expect that the coincidence of

the type B and C invariants here should be related to the fact that these groups are Langlands

dual to each other.

8.1.6. Example. The Ã1 quiver. Let 𝑄 = (• ⇉ •) be the quiver with two vertices and two

arrows pointing in the same direction, called the Ã1 quiver. Consider the contravariant invol-

ution of 𝑄 that exchanges the two vertices but fixes the edges. We use the simplified notation

Ã𝑢,𝑣1 , where 𝑢, 𝑣 are the signs in the self-dual structure. For example, Ã+,++1 means that we

take the sign +1 on all vertices and edges. Note that both vertices must have the same sign.

We use the slope function 𝜏 = (1, −1).
Based on numerical evidence from applying the algorithm in §8.1.4, we conjecture that we

have the generating series

∞
∑
𝑛=0

𝑞𝑛/2 ⋅ DTsd,mot
(𝑛,𝑛) (𝜏) =

⎧⎪⎪
⎨⎪⎪
⎩

(1 − 𝑞)1/2
(1 − 𝑞1/2 𝕃−1/2)(1 − 𝑞1/2 𝕃1/2) for Ã+,++1 and Ã−,−−1 , (8.1.6.1)

(1 + 𝑞1/2
1 − 𝑞1/2)

1/2
for Ã+,+−1 and Ã−,+−1 , (8.1.6.2)

(1 − 𝑞)1/2 for Ã+,−−1 and Ã−,++1 . (8.1.6.3)

This example is related to coherent sheaves on ℙ1, as we will discuss in Example 8.2.5.

8.2 Donaldson–Thomas invariants for curves

8.2.1. We define Donaldson–Thomas invariants counting orthogonal and symplectic bundles

on a curve. These are orthosymplectic versions of Joyce’s motivic invariants counting vector

bundles on a curve, as in [83, §6.3].

8.2.2. Let 𝐶 be a connected, smooth, projective curve over ℂ, and fix the data (𝐼 , 𝐿, 𝑠, 𝜀) as in
§4.2.2. This defines a self-dual structure on Perf(𝐶).

Let 𝜏 = (𝑍, 𝒫 ) be the Bridgeland stability condition on 𝐶 defined as in Example 4.2.7,
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where we choose the unique element 𝜔 ∈ H2(𝐶;ℚ) with ∫𝐶 𝜔 = 1. Explicitly, we have

𝑍(𝐸) = i−𝑠 ⋅ ((1 − i
deg𝐿
2 ) 𝑟 + 𝑑) (8.2.2.1)

for 𝐸 ∈ Perf(𝐶) with rank 𝑟 and degree 𝑑 , so that ch(𝐸) = 𝑟 + 𝑑𝜔. Note that the choices
of 𝐿 and 𝑠 do not affect which objects are semistable, although they affect which objects are

self-dual. The subcategory Vect(𝐶) ⊂ Perf(𝐶) of vector bundles on 𝐶 satisfies Vect(𝐶) =
𝒫 (](−1 − 𝑠)/2, (1 − 𝑠)/2[).

8.2.3. The even case. When 𝑠 is even, the abelian category 𝒫 (0) consists of objects 𝐸[𝑠/2]
for semistable vector bundles 𝐸 on 𝐶 in the usual sense, whose rank 𝑟 and degree 𝑑 satisfy

𝑑 = 𝑟 deg𝐿/2. The self-dual objects are such 𝐸 with isomorphisms 𝜙 ∶ 𝐸 ∼→ ℋom(𝐼 ∗(𝐸), 𝐿)
with 𝐼 ∗(𝜙)∨ ∘ 𝜙 = (−1)𝑠/2 ⋅ 𝜀.

In particular, when 𝐿 = 𝒪𝐶 , semistable self-dual complexes can be identified, up to a shift,

with orthogonal or symplectic bundles on 𝐶 , depending on whether (−1)𝑠/2 ⋅ 𝜀 = 1 or −1,
whose underlying vector bundles are semistable in the usual sense.

For each rank 𝑟 > 0, we have the self-dual Donaldson–Thomas invariants

DTsd
𝑟 ∈ ℚ , DTsd,mot

𝑟 ∈ 𝕄̂μ̂(𝐾;ℚ) ,

counting semistable self-dual vector bundles of rank 𝑟 as above, defined as in §5.6.5 and §6.3.2

using the self-dual linear stack 𝒳(𝜏; 0) defined in §4.2.6 with the trivial stability condition.

8.2.4. The odd case. When 𝑠 is odd, 𝒫 (0) consists of objects 𝐸[(𝑠 − 1)/2] for torsion

sheaves 𝐸 on 𝐶 , and the semistable self-dual objects are such 𝐸 with isomorphisms 𝜙 ∶ 𝐸 ∼→
ℝℋom(𝐼 ∗(𝐸), 𝐿[1]) with 𝐼 ∗(𝜙)∨ ∘ 𝜙 = (−1)(𝑠−1)/2 ⋅ 𝜀. For each degree 𝑑 > 0, we have the
self-dual Donaldson–Thomas invariants

DTsd
0,𝑑 ∈ ℚ , DTsd,mot

0,𝑑 ∈ 𝕄̂μ̂(𝐾;ℚ) ,

counting these self-dual torsion sheaves, defined similarly as above.

In fact, these invariants do not depend on the choice of 𝐿, since choosing a suitable 𝐼 -
invariant open cover of 𝐶 trivializing 𝐿, torsion sheaves supported on the open sets give an

open cover of the moduli stacks, where pieces and intersections do not depend on 𝐿. It then
follows from [31, Theorem 5.2.10 (i)] that the invariants do not depend on 𝐿.
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𝑑

𝑟

𝒪(−2)
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𝒪(0)

𝒪(1)

𝒪(2)

𝒪(2)[1]

𝒪(1)[1]

𝒪(0)[1]

𝒪(−1)[1]

𝒪(−2)[1]

Perf(ℙ1)

Φ
≃

𝑑0 − 𝑑1

𝑑0 + 𝑑1

(−1, −2) (0, −1) (1, 0) (2, 1)

(−2, −1) (−1, 0) (0, 1) (1, 2)

(−1, −1) (1, 1)

DbMod(ℂ𝑄)

Figure 8.1. An equivalence of categories

8.2.5. Example. Invariants forℙ1. Consider the case when 𝐶 = ℙ1 and 𝐼 = idℙ1 . We describe

the invariants in two situations.

When 𝑠 = 0 and 𝐿 = 𝒪ℙ1 , since every vector bundle on ℙ1 splits as a direct sum of line

bundles, all semistable vector bundles of slope 0 are trivial bundles. The self-dual abelian

category 𝒫 (0) is thus equivalent to the category of finite-dimensional ℂ-vector spaces, with
one of the two self-dual structures described in Example 8.1.5, depending on the sign 𝜀. The
DT invariants agree with the ones given there.

When 𝑠 = 1, invariants for ℙ1 are related to Donaldson–Thomas invariants for self-dual

quivers. Indeed, as a special case of Bondal [17, Theorem 6.2], we have an equivalence

Φ∶ Perf(ℙ1) ∼⟶ DbMod(ℂ𝑄) , (8.2.5.1)

where 𝑄 is the Ã1 quiver in Example 8.1.6, and Φ(𝐸) = (ℝΓ(ℙ1, 𝐸(−1)) ⇉ ℝΓ(ℙ1, 𝐸)), with
the two maps given by multiplying with the coordinate functions 𝑥0, 𝑥1 ∈ Γ(ℙ1, 𝒪ℙ1(1)).

In fact, under the isomorphism Φ, the self-dual structure on Perf(ℙ1) given by (𝐼 = idℙ1 ,
𝐿 = 𝒪ℙ1(−1), 𝑠 = 1, 𝜀) corresponds to the self-dual structure on DbMod(ℂ𝑄) given by the

signs (𝜀, ++) in the notation of Example 8.1.6, as shown in Fig. 8.1. Here, 𝑟 and 𝑑 denote the

rank and degree of a complex on ℙ1, and (𝑑0, 𝑑1) is the dimension vector of a representation

of 𝑄. The two-way arrows indicate the dual operation, and the self-dual objects lie on the

vertical axis on the left-hand side, or the horizontal axis on the right-hand side. The shaded

regions indicate the usual heart of DbMod(ℂ𝑄) and the corresponding heart of Perf(ℙ1).
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The right-hand side can also be viewed either as the central charge of 𝜏 , or that of the stability
condition on 𝑄 given by the slope function (1, −1).

In particular, the Donaldson–Thomas invariants in this case coincide with those in Ex-

ample 8.1.6, and should be given by the conjectural formulae (8.1.6.1) and (8.1.6.3).

8.3 Donaldson–Thomas invariants for threefolds

8.3.1. WedefineDonaldson–Thomas invariants counting orthogonal or symplectic complexes

on a Calabi–Yau threefold. These invariants are one of themain applications of our theory, and

are an extension of the usual Donaldson–Thomas invariants studied by Thomas [145], Joyce

and Song [87], Kontsevich and Soibelman [97], and many others. We expect our invariants

to be related to counting D-branes on Calabi–Yau 3-orientifolds, as discussed in Witten [156,

§5.2], Diaconescu, Garcia-Raboso, Karp, and Sinha [52], and Hori and Walcher [74].

We also prove wall-crossing formulae for these invariants in Theorem 8.3.3, which relate

the invariants for different Bridgeland stability conditions.

8.3.2. Invariants. Let 𝑌 be a Calabi–Yau threefold over ℂ, and fix the data (𝐼 , 𝐿, 𝑠, 𝜀) as in
§4.2.2. Let 𝜏 = (𝑍, 𝒫 ) ∈ Stab∘,sd(𝑌) be a self-dual Bridgeland stability condition on 𝑌 as in

§4.2.6, which always exists in the situation of Example 4.2.7.

Recall from §4.2.6 the derived moduli stacks

𝒳(𝜏; 𝐽) ⊂ 𝒫 erf (𝑌)

of 𝜏 -semistable complexes on 𝑌 of phase within an interval 𝐽 ⊂ ℝ with |𝐽 | < 1, which is a

(−1)-shifted symplectic linear stack, and is self-dual if 𝐽 = −𝐽 .
Moreover, the stack 𝒳(𝜏; 𝐽) has an orientation data in the sense of §3.7.4, by Joyce and

Upmeier [88, Theorem 3.6]. However, we do not know, in the case when 𝐽 = −𝐽 , if the moduli

stack 𝒳(𝜏; 𝐽)sd of orthosymplectic complexes has an orientation in general.

Given a class 𝛼 ∈ 𝐾(𝑌) with 𝑍𝜔(𝛼) ∈ ℝ>0 ⋅ eπi𝑡 for some phase 𝑡 ∈ ℝ, define the

numerical and motivic Donaldson–Thomas invariants

DT𝛼(𝜏) ∈ ℚ , DTmot
𝛼 (𝜏) ∈ 𝕄̂μ̂(ℂ;ℚ) ,
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as in §5.6.3 and §6.3.1 for the stack 𝒳(𝜏; 𝑡) with the trivial stability condition, where we take

the sum of Donaldson–Thomas invariants of connected components of the open and closed

substack 𝒳(𝜏; 𝑡)𝛼 ⊂ 𝒳(𝜏; 𝑡), and we use the orientation of Joyce and Upmeier [88] for the

motivic version. These invariants are not new, and can be constructed from the formalisms of

Joyce and Song [87] and Kontsevich and Soibelman [97].

When 𝑡 = 0, for each 𝜃 ∈ 𝐾 sd(𝑌) with 𝑍𝜔(𝜃) ∈ ℝ>0, we have the numerical self-dual

Donaldson–Thomas invariant

DTsd
𝜃 (𝜏) ∈ ℚ ,

defined as in §5.6.4 for the self-dual linear stack 𝒳(𝜏; 0) with the trivial stability condition,

where we sum over connected components of𝒳(𝜏; 0)sd𝜃 . These are new invariants for Calabi–

Yau threefolds, and are one of the main constructions of this thesis.

If one can construct a self-dual orientation data on𝒳(𝜏; 0) in the sense of §3.7.5, then the

motivic self-dual Donaldson–Thomas invariant DTmot,sd
𝜃 (𝜏) will also be defined, as in §6.3.1.

8.3.3. Theorem. Let 𝑌 be a Calabi–Yau threefold overℂ. Choose the data (𝐼 , 𝐿, 𝑠, 𝜀) as in §4.2.2.
Let 𝜏 = (𝑍, 𝒫 ), 𝜏̃ = (𝑍̃ , ̃𝒫 ) ∈ Stab∘(𝑌) be Bridgeland stability conditions.

(i) If 𝜏 , 𝜏̃ can be connected by a path of length< 1/4 in Stab∘(𝑌), then for any class 𝛼 ∈ 𝐾(𝑌)
with 𝑍(𝛼) ≠ 0, the wall-crossing formula (7.3.2.1) holds.

(ii) If 𝜏 , 𝜏̃ ∈ Stab∘,sd(𝑌), and they can be connected by a path of length < 1/4 in Stab∘,sd(𝑌),
then for any class 𝜃 ∈ 𝐾 sd(𝑌) with 𝑍(𝜃) ∈ ℝ>0, the wall-crossing formula (7.3.2.2) holds.

Here, the precise formulations of the wall-crossing formulae are as in Theorem 7.5.3.

Moreover, if we are given an orientation data on 𝒳(𝜏; ]𝑡 − 1/2, 𝑡 + 1/2[), or a self-dual

orientation data on𝒳(𝜏; ]−1/2, 1/2[), respectively, then (i)–(ii) also hold for the motivic versions

(7.3.2.3)–(7.3.2.4), where 𝛼 has phase 𝑡 .

Proof. This is a special case of Theorem 7.5.3.

8.3.4. Generic stability conditions. Following Joyce and Song [87, Conjecture 6.12], we say

that a stability condition 𝜏 as above is generic, if for any 𝛼, 𝛽 ∈ 𝐾(𝑌)with𝑍(𝛼) = 𝜆𝑍(𝛽) ≠ 0
for some 𝜆 ∈ ℝ>0, we have the numerical condition vdim 𝒳̄+

𝛼,𝛽 = 0.
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Similarly, when 𝜏 is self-dual, we say that it is generic as a self-dual stability condition, if it

is generic as above, and for any 𝛼 ∈ 𝐾(𝑌) of phase 0 and 𝜃 ∈ 𝐾 sd(𝑌), we have vdim 𝒳̄ sd,+
𝛼,𝜃 = 0.

By the first part in the proof of Theorem 8.3.3, combined with Corollary 7.3.4, we see

that if 𝜏 ∈ Stab∘,sd(𝑌) is generic, then for each class 𝛼 or 𝜃 as in Theorem 8.3.3, there exists

𝛿 > 0, such that the invariant DT𝛼(𝜏) or DTsd
𝜃 (𝜏) does not change if we move 𝜏 inside its

𝛿-neighbourhood. Moreover, this also holds for the motivic versions DTmot
𝛼 (𝜏) or DTmot,sd

𝜃 (𝜏),
where the self-dual version requires a self-dual orientation data.

8.3.5. Expectations on deformation invariance. We expect that the numeric version of the or-

thosymplectic Donaldson–Thomas invariants, DTsd
𝜃 (𝜏), should satisfy deformation invariance,

analogously to Joyce and Song [87, Corollary 5.28] in the linear case, that is, they should stay

constant under deformations of the complex structure of the threefold 𝑌 . However, we have
not yet been able to prove this, as it does not seem straightforward to adapt the strategy of

[87] using Joyce–Song pairs to our case, and further work is needed.

We do not expect the motivic version, DTsd,mot
𝜃 (𝜏), to satisfy deformation invariance.

8.4 Vafa–Witten type invariants for surfaces

8.4.1. We construct a motivic version of orthosymplectic analogues of Vafa–Witten invariants

for algebraic surfaces, studied by Tanaka and Thomas [142; 143], Maulik and Thomas [112],

and Thomas [146]. We define our invariants for surfaces 𝑆 with 𝐾𝑆 ⩽ 0.
Our invariants count orthosymplectic Higgs complexes on a surface introduced in §4.3, gen-

eralizing the notion of 𝐺-Higgs bundles for 𝐺 = O(𝑛) or Sp(2𝑛).
Via the spectral construction, these invariants can be seen as a version of orthosymplectic

Donaldson–Thomas invariants in §8.3, for the non-compact Calabi–Yau threefold𝐾𝑆 , the total

space of the canonical bundle of the surface 𝑆, with an involution that reverses the fibre dir-

ection.

8.4.2. Invariants. Let 𝑆 be an algebraic surface over 𝒞 with 𝐾𝑆 ⩽ 0, equipped with the data

(𝐼 , 𝐿, 𝑠, 𝜀) as in §4.3.2, and let 𝜏 ∈ Stab∘,sd(𝑆) be a permissible self-dual Bridgeland stability
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condition. Recall from §4.3.4 the derived moduli stacks

ℋ(𝜏; 𝑡) ⊂ ℋiggs(𝑆)

of 𝜏 -semistable Higgs complexes of phase 𝑡 , for 𝑡 ∈ ℝ, which is a (−1)-shifted symplectic

linear stack, and is self-dual if 𝑡 = 0.
For a class 𝛼 ∈ 𝐾(𝑆) with 𝑍(𝛼) ≠ 0 or 𝜃 ∈ 𝐾 sd(𝑆) of phase 0, define the Vafa–Witten

type invariants

vw𝛼(𝜏) ∈ ℚ , vwsd
𝜃 (𝜏) ∈ ℚ

counting semistable Higgs complexes of class 𝛼 or semistable self-dual Higgs complexes of

class 𝜃 , as the Donaldson–Thomas invariants in §5.6 for the stack ℋ(𝜏; 𝑡) equipped with the

trivial stability condition, where 𝑡 ∈ ℝ is a phase of 𝑍(𝛼) or 𝑡 = 0 for 𝜃 .
Moreover, sinceℋ(𝜏; 𝑡) andℋ(𝜏; 0)sd are (−1)-shifted cotangent stacks, they come with

canonical orientations, which define an orientation data onℋ(𝜏; 𝑡) and a self-dual orientation
data on ℋ(𝜏; 0). We use them to define motivic Vafa–Witten type invariants

vwmot𝛼 (𝜏) , vwmot,sd
𝜃 (𝜏) ∈ 𝕄̂μ̂(ℂ;ℚ) .

8.4.3. Wall-crossing. We have the following theorem stating the wall-crossing formulae for

our Vafa–Witten invariants, which is analogous to Theorem 8.3.3.

Theorem. Let 𝑆 be a surface with 𝐾𝑆 ⩽ 0, and choose the data (𝐼 , 𝐿, 𝑠, 𝜀) as in §4.3.2. Let

𝜏 , 𝜏̃ ∈ Stab∘(𝑆) be Bridgeland stability conditions.

(i) If 𝜏 , 𝜏̃ can be connected by a path of length < 1/4 in Stab∘(𝑆), then for any class 𝛼 ∈ 𝐾(𝑆)
with 𝑍(𝛼) ≠ 0, the wall-crossing formulae (7.3.2.1) and (7.3.2.3) hold for the invariants

vw𝛼(−), vwmot𝛼 (−) when changing between 𝜏 and 𝜏̃ .
(ii) If 𝜏 , 𝜏̃ ∈ Stab∘,sd(𝑆), and they can be connected by a path of length < 1/4 in Stab∘,sd(𝑆),

then for any class 𝜃 ∈ 𝐾 sd(𝑆) with 𝑍(𝜃) ∈ ℝ>0, the wall-crossing formulae (7.3.2.2) and

(7.3.2.4) hold for the invariants vwsd
𝜃 (−), vwmot,sd

𝜃 (−) when changing between 𝜏 and 𝜏̃ .

Here, the precise formulations of the wall-crossing formulae are as in Theorem 7.5.3.

Proof. This is a special case of Theorem 7.5.3.
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8.4.4. The case of K3 surfaces. We now specialize to the case when 𝑆 is a K3 surface or an

abelian surface. In this case, for any 𝐸, 𝐹 ∈ Perf(𝑆), we have the numerical relations

rk Ext•𝑆(𝐸, 𝐹) = rk Ext•𝑆(𝐹 , 𝐸) , (8.4.4.1)

rk Ext•𝑆(𝐸,𝔻(𝐸))ℤ2 = rk Ext•𝑆(𝔻(𝐸), 𝐸)ℤ2 , (8.4.4.2)

where ‘rk’ denotes the alternating sum of dimensions, and (−)ℤ2 denotes the fixed part of the

involution 𝜙 ↦ 𝔻(𝜙).
These relations imply that 𝒳̄ and 𝒳̄ sd are numerically symmetric in the sense of §7.3.3, and

therefore, by Corollary 7.3.4 and Theorem 8.4.3, the invariants vw𝛼(−), vwsd
𝜃 (−), vwmot𝛼 (−),

and vwmot,sd
𝜃 (−) are locally constant functions on Stab∘(𝑆) or Stab∘,sd(𝑆).
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Appendix A

Proof of the no-pole theorem

This appendix contains the proof of the no-pole theorem, Theorem 5.5.5.

A.1 Virtual rank projections

A.1.1. To prove the no-pole theorem, we first give a useful alternative description of the virtual

rank projection operators

𝜋 (𝑘) ∶ 𝕄(𝒳) ⟶ 𝕄(𝑘)(𝒳) , (A.1.1.1)

𝜋 (𝑘) ∶ 𝕄(𝒳 sd) ⟶ 𝕄(𝑘)(𝒳 sd) , (A.1.1.2)

introduced in §5.2.9, in the special case when𝒳 is a self-dual linear stack over a field 𝐾 . This

alternative description will be better suited for interacting with operations in the motivic Hall

algebra and module introduced in §5.4.

The following description is a specialization of the formulation in the author, Ibáñez Núñez,

and Kinjo [31, §5.1] to the case of self-dual linear stacks.

A.1.2. The description. Define operations

⊛ = ⊕! ∶ 𝕄(𝒳) ⊗𝕄(𝒳) ⟶ 𝕄(𝒳) , (A.1.2.1)

= ⊕sd! ∶ 𝕄(𝒳) ⊗𝕄(𝒳 sd) ⟶ 𝕄(𝒳 sd) , (A.1.2.2)

where ⊕∶ 𝒳 × 𝒳 → 𝒳 is the direct sum morphism, and ⊕sd is the morphism defined in

(3.4.1.1). These operations 𝕄(𝒳) into a commutative algebra, and 𝕄(𝒳 sd) into a module

over this algebra, which are similar to but different from the motivic Hall algebra and module.

125



For classes 𝛼 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd), define elements 𝜎𝛼(𝜏) ∈ 𝕄(𝒳 ss𝛼 (𝜏)) and

𝜎 sd
𝜃 (𝜏) ∈ 𝕄(𝒳 sd,ss

𝜃 (𝜏)) by

𝜎𝛼(𝜏) = ∑
𝑛 > 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,
𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛)

(−1)𝑛−1
𝑛 ⋅ [𝒳 ss𝛼1(𝜏)] ⊛⋯⊛ [𝒳 ss𝛼𝑛(𝜏)] , (A.1.2.3)

𝜎 sd
𝜃 (𝜏) = ∑

𝑛 ⩾ 0; 𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌

𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛) = 0

(−1/2𝑛 ) ⋅ [𝒳 ss𝛼1(𝜏)] ⋯ [𝒳 ss𝛼1(𝜏)] [𝒳 sd,ss𝜌 (𝜏)] . (A.1.2.4)

Compare with (5.5.2.1) and (5.5.3.1). The element 𝜎𝛼(𝜏) was denoted by ̄𝛿𝛼si (𝜏) in Joyce [81,

Definition 8.1].

Then, for any 𝛼 ∈ π0(𝒳) and 𝜃 ∈ π0(𝒳 sd), and any 𝑛 ∈ ℕ, we have

𝜋 (𝑛)([𝒳 ss𝛼 (𝜏)]) = 1
𝑛! ⋅ ∑

𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑛 ,
𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛)

𝜎𝛼1(𝜏) ⊛⋯⊛ 𝜎𝛼𝑛(𝜏) , (A.1.2.5)

𝜋 (𝑛)([𝒳 sd,ss
𝜃 (𝜏)]) = 1

2𝑛𝑛! ⋅ ∑
𝛼1, … , 𝛼𝑛 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑛 + 𝛼∨
𝑛 + 𝜌

𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑛) = 0

𝜎𝛼1(𝜏) ⋯ 𝜎𝛼𝑛(𝜏) 𝜎 sd𝜌 (𝜏) . (A.1.2.6)

In particular, we have

𝜋 (1)([𝒳 ss𝛼 (𝜏)]) = 𝜎𝛼(𝜏) , (A.1.2.7)

𝜋 (0)([𝒳 sd,ss
𝜃 (𝜏)]) = 𝜎 sd

𝜃 (𝜏) . (A.1.2.8)

A.2 The no-pole theorem

A.2.1. For a linear stack 𝒳 , a permissible stability condition 𝜏 on 𝒳 , and a slope 𝑡 ∈ 𝑇 ,
where 𝑇 is the target of the map 𝜏 , recall the linear substack𝒳 ss(𝜏 ; 𝑡) ⊂ 𝒳 defined in (3.5.4.2).

A key idea of the proof of the no-pole theorem is to consider the linear stack

𝒳 ss,(𝑛)(𝜏 ; 𝑡) = ∐
𝛼1,…,𝛼𝑛∈𝜏−1(𝑡)∪{0}

𝒳 ss,+𝛼1,…,𝛼𝑛(𝜏) (A.2.1.1)

126



of 𝑛-step filtrations in𝒳 ss(𝜏 ; 𝑡), where 𝑛 ∈ ℕ is a fixed integer, 𝛼1, … , 𝛼𝑛 are classes in π0(𝒳)
that are either zero or of slope 𝑡 , and we define

𝒳 ss,+𝛼1,…,𝛼𝑛(𝜏) = 𝒳 ss(𝜏 ; 𝑡)+𝛼1,…,𝛼𝑛 ⊂ ℱilt(𝒳 ss(𝜏 ; 𝑡)) (A.2.1.2)

as the preimage of 𝒳+𝛼1,…,𝛼𝑛 under the induced map ℱilt(𝒳 ss(𝜏 ; 𝑡)) → ℱilt(𝒳). Note that as
in §3.3.4, we do not choose a canonical connected component of ℱilt(𝒳), but any choice will

give the same construction up to a canonical isomorphism.

For 𝛼1, … , 𝛼𝑛 as above, we also define an element

𝜎 (𝑛)𝛼1,…,𝛼𝑛(𝜏) ∈ 𝕄(𝒳 ss,+𝛼1,…,𝛼𝑛(𝜏)) (A.2.1.3)

by the formula (A.1.2.3) for the linear stack 𝒳 ss,(𝑛)(𝜏 ; 𝑡) and its connected components lying

in 𝒳 ss,+𝛼1,…,𝛼𝑛(𝜏).
We also use the notation 𝜎 (𝐼 )

(𝛼𝑖)𝑖∈𝐼 (𝜏) for a totally ordered set 𝐼 with |𝐼 | = 𝑛 and a tuple

(𝛼𝑖 ∈ π0(𝒳))𝑖∈𝐼 for the element (A.2.1.3).

Similarly, if 𝒳 is equipped with a self-dual structure, and 𝜏 is self-dual, then the linear

stack 𝒳 sd,ss,(𝑛)(𝜏 ; 0) is equipped with an induced self-dual structure, where we identify

𝒳 ss,+𝛼1,…,𝛼𝑛(𝜏) ≃ 𝒳 ss,+
𝛼∨𝑛 ,…,𝛼∨1 (𝜏) . (A.2.1.4)

For classes 𝛼1, … , 𝛼𝑛 ∈ 𝜏−1(0) ∪ {0} and 𝜌 ∈ π0(𝒳 sd), we also define an element

𝜎 (2𝑛+1),sd𝛼1,…,𝛼𝑛 ,𝜌(𝜏) ∈ 𝕄(𝒳 sd,ss,+𝛼1,…,𝛼𝑛 ,𝜌(𝜏)) (A.2.1.5)

as in (A.1.2.4) for the self-dual linear stack 𝒳 ss,(2𝑛+1)(𝜏 ; 0) and its connected components

lying in 𝒳 sd,ss,+𝛼1,…,𝛼𝑛 ,𝜌(𝜏), the preimage of 𝒳 sd,+𝛼1,…,𝛼𝑛 ,𝜌(𝜏) as in §3.4.4 under the induced map

ℱilt(𝒳 sd,ss(𝜏 ; 0)) → ℱilt(𝒳 sd), where we write 𝒳 sd,ss(𝜏 ; 0) = 𝒳 ss(𝜏 ; 0)sd.
We also denote (A.2.1.5) as 𝜎 (𝐼 ),sd

(𝛼𝑖)𝑖∈𝐼 (𝜏), where 𝐼 is a totally ordered set with |𝐼 | = 2𝑛 + 1,
equipped with a (unique) order-reversing involution (−)∨, and the tuple (𝛼𝑖)𝑖∈𝐼 satisfies 𝛼0 ∈
π0(𝒳 sd), where 0 ∈ 𝐼 is the unique fixed element of the involution, and 𝛼𝑖 ∈ π0(𝒳) for

𝑖 ≠ 0, with 𝛼𝑖∨ = 𝛼∨𝑖 for all such 𝑖, so that the element (A.2.1.5) corresponds to the tuple

(𝛼1, … , 𝛼𝑛, 𝜌, 𝛼∨𝑛 , … , 𝛼∨1 ) written using the order of 𝐼 .

A.2.2. Proof of Theorem 5.5.5. Wefirst spell out the proof of (ii), which is themain new result,
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and then explain how to modify the argument to prove (i), which is easier, and is a variant of

Joyce’s no-pole theorem in the linear case.

For 𝛼1, … , 𝛼𝑘 ∈ π0(𝒳) ∖ {0} and 𝜌 ∈ π0(𝒳 sd), we have

ev!([𝒳 sd,ss,+𝛼1,…,𝛼𝑘 ,𝜌(𝜏)]) = [𝒳 ss𝛼1(𝜏)] ⋄⋯ ⋄ [𝒳 ss𝛼𝑘(𝜏)] ⋄ [𝒳 sd,ss𝜌 (𝜏)] , (A.2.2.1)

as motives on𝒳 sd,ss
𝛼1+𝛼∨1 +⋯+𝛼𝑘+𝛼∨𝑘 +𝜌(𝜏), where ⋄ is the multiplication in themotivic Hall module.

Recall from (5.5.3.1) the definition of 𝜖sd𝜃 (𝜏), which can now be written as

𝜖sd𝜃 (𝜏) = ∑
𝑘 ⩾ 0; 𝛼1, … , 𝛼𝑘 ∈ π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = 𝛼1 + 𝛼∨

1 +⋯+ 𝛼𝑘 + 𝛼∨
𝑘 + 𝜌

𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑘) = 0

(−1/2𝑘 ) ⋅ ev!([𝒳 sd,ss,+𝛼1,…,𝛼𝑘 ,𝜌(𝜏)]) . (A.2.2.2)

To prove the theorem, it is enough to prove that

𝜋 (𝑛)(𝜖sd𝜃 (𝜏)) = 0 (A.2.2.3)

for all integers 𝑛 > 0.
By [82, Proposition 5.14], the virtual rank projection 𝜋 (𝑛) commutes with the pushforward

ev!. We therefore study the virtual rank projections of [𝒳 sd,ss,+𝛼1,…,𝛼𝑘 ,𝜌(𝜏)].
Write 𝐼 = {1,… , 𝑘, 0, 𝑘∨, … , 1∨} and 𝐽 = {1,… , 𝑛, 0, 𝑛∨, … , 1∨}, with total orders given

by the written order, and the obvious involutions. Applying (A.1.2.6) to the self-dual linear

stack 𝒳 ss,(𝐼 )(𝜏 , 0), we obtain

𝜋 (𝑛)([𝒳 sd,ss,+𝛼1,…,𝛼𝑘 ,𝜌(𝜏)]) =
1

2𝑛𝑛! ⋅

∑
𝛼𝑖,𝑗 ∈ π0(𝒳) for (𝑖, 𝑗) ∈ (𝐼 × 𝐽) ∖ (0, 0); 𝜌0,0 ∈ π0(𝒳 sd) ∶
𝜏(𝛼𝑖,𝑗) = 0 for all (𝑖, 𝑗) with 𝛼𝑖,𝑗 ≠ 0,
𝛼𝑖∨ ,𝑗∨ = 𝛼∨

𝑖,𝑗 for all (𝑖, 𝑗),
𝛼𝑖 = ∑𝑗∈𝐽 𝛼𝑖,𝑗 for all 𝑖 ∈ 𝐼 ,
𝜌 = 𝛼0,1 + 𝛼∨

0,1 +⋯+ 𝛼0,𝑛 + 𝛼∨
0,𝑛 + 𝜌0,0 ,

∑𝑖∈𝐼 𝛼𝑖,𝑗 ≠ 0 for all 𝑗 ∈ 𝐽 ∖ 0

𝜎 (𝐼 )
(𝛼𝑖,1)𝑖∈𝐼 (𝜏) ⋯ 𝜎 (𝐼 )

(𝛼𝑖,𝑛)𝑖∈𝐼 (𝜏) 𝜎 (𝐼 ),sd𝛼1,0, …,𝛼𝑘,0,𝜌0,0(𝜏) . (A.2.2.4)

We abbreviate each term in the sum (A.2.2.4) as 𝜎 (𝐼 ),sd𝛼 (𝜏), where 𝛼 = (𝛼𝑖,𝑗)𝑖∈𝐼 , 𝑗∈𝐽 is a matrix

with 𝛼0,0 = 𝜌0,0, and write

𝜎 sd𝛼 (𝜏) = (𝜋 (𝐼 ),sd)! 𝜎 (𝐼 ),sd𝛼 (𝜏) .

128



Let𝐴𝑛,𝑘 be the set of matrices 𝛼 that appear in (A.2.2.4) for some choice of 𝛼1, … , 𝛼𝑘 , 𝜌. Then
(A.2.2.2) and (A.2.2.4) imply that

𝜋 (𝑛)(𝜖sd𝜃 (𝜏)) = 1
2𝑛𝑛! ⋅ ∑𝑘⩾0

∑
𝛼∈𝐴𝑛,𝑘

(−1/2𝑘 ) ⋅ 𝜎 sd𝛼 (𝜏) . (A.2.2.5)

Note that the element 𝜎 sd𝛼 (𝜏) only depends on the equivalent class of 𝛼 , where two matrices

𝛼 ∈ 𝐴𝑛,𝑘 and 𝛼 ′ ∈ 𝐴𝑛,𝑘′ are equivalent if for all 𝑗 ∈ 𝐽 , the subsequence of (𝛼𝑖,𝑗)𝑖∈𝐼 with 𝛼𝑖,𝑗 ≠
0 is the same as the subsequence of (𝛼 ′𝑖,𝑗)𝑖∈𝐼 ′ with 𝛼 ′𝑖,𝑗 ≠ 0, where 𝐼 ′ = {1,… , 𝑘′, 0, 𝑘′∨, … , 1∨}.
It is then enough to prove that for a fixed 𝛼 , we have

∑
𝑘⩾0

(−1/2𝑘 ) ⋅ ∑
𝛼′∈𝐴𝑛,𝑘 ∶𝛼′∼𝛼

1 = 0 . (A.2.2.6)

To prove this, we first observe that the number 𝛼 ′ ∈ 𝐴𝑛,𝑘 with 𝛼 ′ ∼ 𝛼 is equal to the number

of subsets of 𝐼 × 𝐽 , invariant under the involution (𝑖, 𝑗) ↦ (𝑖∨, 𝑗∨), such that the number of

elements in each row {𝑖} × 𝐽 is non-zero unless 𝑖 = 0, and the number of elements in each

column 𝐼 × {𝑗} is equal to 𝑎𝑗 , where 𝑎𝑗 is the number of non-zero entries 𝛼𝑖,𝑗 in 𝛼 in that

column. Note that 𝑎𝑗 = 𝑎𝑗∨ for all 𝑗 ∈ 𝐽 .
Consider the generating series of this counting problem, with a formal variable 𝑥𝑗 assigned

to each 𝑎𝑗 for 𝑗 ∈ {1,… , 𝑛, 0}. For convenience, we write 𝑥𝑗∨ = 𝑥𝑗 for 𝑗 ∈ 𝐽 . Summing over

𝑘 ⩾ 0, we obtain the generating series

𝐹(𝑥1, … , 𝑥𝑛, 𝑥0) = ∑
𝑘⩾0

(−1/2𝑘 ) ⋅ ( ∑
∅≠𝐽 ′⊂𝐽

∏
𝑗∈𝐽 ′

𝑥𝑗)
𝑘
⋅ ∑
𝐽 ′⊂{1,…,𝑛,0}

∏
𝑗∈𝐽 ′

𝑥𝑗

= ( ∏
𝑗∈𝐽

(1 + 𝑥𝑗))
−1/2

⋅
𝑛
∏
𝑗=0

(1 + 𝑥𝑗)

= (1 + 𝑥0)1/2 . (A.2.2.7)

Therefore, the left-hand side of (A.2.2.6) is zero unless 𝑎𝑗 = 0 for all 𝑗 ≠ 0. But this cannot
happen, as we assumed that 𝑛 > 0. This proves (A.2.2.6), and hence (A.2.2.3).

Finally, for the linear case (i), we use an analogous argument. Fix a class 𝛼 ∈ π0(𝒳)∖ {0},
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and set 𝑡 = 𝜏(𝛼). The definition (5.5.2.1) can be rewritten as

𝜖𝛼(𝜏) = ∑
𝑘 ⩾ 0; 𝛼1, … , 𝛼𝑘 ∈ π0(𝒳) ∖ {0} ∶
𝛼 = 𝛼1 +⋯+ 𝛼𝑘
𝜏(𝛼1) = ⋯ = 𝜏(𝛼𝑘)

(−1)𝑘−1
𝑘 ⋅ ev!([𝒳 ss,+𝛼1,…,𝛼𝑘(𝜏)]) . (A.2.2.8)

It follows from this and (A.1.2.5) for the linear stack 𝒳 ss,(𝑘)(𝜏 ; 𝑡) that 𝜋 (0)(𝜖𝛼(𝜏)) = 0, and it

suffices to show that 𝜋 (𝑛)(𝜖𝛼(𝜏)) = 0 for all 𝑛 > 1. The key combinatorial identity (A.2.2.6)

that we need to prove now becomes

∑
𝑘⩾0

(−1)𝑘−1
𝑘 ⋅ 𝑏𝑘 = 0 , (A.2.2.9)

where we write 𝐼 = {1,… , 𝑘} and 𝐽 = {1,… , 𝑛}, and we fix a sequence (𝑎𝑗 ∈ ℕ>0)𝑗∈𝐽 ,
and 𝑏𝑘 is the number of subsets of 𝐼 × 𝐽 whose intersection with each row {𝑖} × 𝐽 is non-

empty, and whose intersection with each column 𝐼 ×{𝑗} has size precisely 𝑎𝑗 . Again, consider
the generating series of this counting problem, with a formal variable 𝑥𝑗 assigned to each 𝑎𝑗 ,
we obtain the series

𝐺(𝑥1, … , 𝑥𝑛) = ∑
𝑘⩾0

(−1)𝑘−1
𝑘 ⋅ ( ∑

∅≠𝐽 ′⊂𝐽
∏
𝑗∈𝐽 ′

𝑥𝑗)
𝑘

= log( ∏
𝑗∈𝐽

(1 + 𝑥𝑗))

= ∑
𝑗∈𝐽

log(1 + 𝑥𝑗) . (A.2.2.10)

Therefore, the left-hand side of (A.2.2.9) is zero unless 𝑎𝑗 = 0 for all but one 𝑗 ∈ 𝐽 , as the above
expression is a linear combination of monomials of the form 𝑥ℓ𝑗 . Again, this is impossible, as

we assumed that 𝑛 > 1.
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Appendix B

Proof of the integral identity

This appendix is devoted to the proof of themotivic integral identities, Theorems 7.4.2 and 7.4.5,

which we used to prove wall-crossing formulae for our Donaldson–Thomas invariants. We

prove three versions of the identity: First, in §B.2, we prove a local version of themain theorem,

using the theory of motivic nearby and vanishing cycles for stacks developed in §B.1. Then,

in §B.3, we glue the local versions together to prove the global version, Theorem 7.4.2. Finally,

in §B.4, we take Euler characteristics in the previous identity to obtain identities involving the

numerical Behrend functions, Theorem 7.4.5.

Throughout this appendix, we work over an algebraically closed field 𝐾 of characteristic

zero. We mean by a 𝐾 -variety a reduced, separated 𝐾 -scheme of finite type.

B.1 Motivic vanishing cycles

B.1.1. In this section, we set up an important technical tool that will be used in the proof of

the integral identity, the motivic vanishing cycle map for stacks, generalizing the construction

of Bittner [15] from varieties to stacks.

B.1.2. For varieties. Let 𝑋 be a 𝐾 -variety, and let 𝑓 ∶ 𝑋 → 𝔸1 be a morphism. Write 𝑋0 =
𝑓 −1(0). Define the nearby cycle map of 𝑓 , denoted by

Ψ𝑓 ∶ 𝕄(𝑋) ⟶ 𝕄μ̂(𝑋0) ,

to be the unique 𝕄(𝐾)-linear map such that for any smooth 𝐾 -variety 𝑍 and any proper
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morphism 𝜌 ∶ 𝑍 → 𝑋 , we have

Ψ𝑓 ([𝑍]) = (𝜌0)! (MF𝑓 ∘𝜌) ∈ 𝕄μ̂(𝑋0) ,

where 𝜌0 ∶ 𝑍0 → 𝑋0 is the restriction of 𝜌 to 𝑍0 = (𝑓 ∘ 𝜌)−1(0), and MF𝑓 ∘𝜌 ∈ 𝕄μ̂(𝑍0) is
the motivic Milnor fibre of 𝑓 ∘ 𝜌. It follows from Bittner [15, Claim 8.2] that the map Ψ𝑓 is

well-defined.

Define the vanishing cycle map of 𝑓 to be the map

Φ𝑓 = Ψ𝑓 − 𝜄μ̂ ∘ 𝑖∗ ∶ 𝕄(𝑋) ⟶ 𝕄μ̂(𝑋0) ,

where 𝑖 ∶ 𝑋0 ↪ 𝑋 is the inclusion, and 𝜄μ̂ ∶ 𝕄(𝑋0) ↪ 𝕄μ̂(𝑋0) is the inclusion.

B.1.3. For algebraic spaces. We now generalize the motivic nearby and vanishing cycle maps

from varieties to algebraic spaces.

As in Bittner [15, Theorem 8.4], the nearby and vanishing cycle maps are compatible

with pulling back along smooth morphisms. In particular, these maps define morphisms

Ψ, Φ∶ 𝕄(−) → 𝕄μ̂((−)0) of sheaves on the category of reduced, separated 𝐾 -schemes of

finite type with a morphism to𝔸1, with the Nisnevich topology. Since algebraic spaces admit

Nisnevich covers by affine 𝐾 -varieties, as mentioned in §5.3.2, these morphisms of sheaves

induce maps on their evaluations on algebraic spaces over 𝐾 .

More precisely, for a quasi-separated algebraic space 𝑋 locally of finite type over 𝐾 , and

a morphism 𝑓 ∶ 𝑋 → 𝔸1, we have the nearby and vanishing cycle maps

Ψ𝑓 , Φ𝑓 ∶ 𝕄(𝑋) ⟶ 𝕄μ̂(𝑋0) .

We state some of their properties below.

B.1.4. Theorem. Let 𝑋, 𝑌 be quasi-separated algebraic spaces locally of finite type over 𝐾 .

(i) Let 𝑔 ∶ 𝑌 → 𝑋 be a proper morphism, and 𝑓 ∶ 𝑋 → 𝔸1 a morphism. Then we have a

commutative diagram

𝕄(𝑌) 𝕄(𝑋)

𝕄μ̂(𝑌0) 𝕄μ̂(𝑋0) .

𝑔!

Ψ𝑓 ∘𝑔  Ψ𝑓

𝑔!
(B.1.4.1)
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(ii) Let 𝑔 ∶ 𝑌 → 𝑋 be a smooth morphism, and 𝑓 ∶ 𝑋 → 𝔸1 a morphism. Then we have a

commutative diagram

𝕄(𝑋) 𝕄(𝑌)

𝕄μ̂(𝑋0) 𝕄μ̂(𝑌0) .

𝑔∗

Ψ𝑓  Ψ𝑓 ∘𝑔

𝑔∗
(B.1.4.2)

Proof. The case when 𝑋 and 𝑌 are 𝐾 -varieties was proved in Bittner [15, Theorem 8.4]. The

verification of (ii) for algebraic spaces is completely formal, by passing to Nisnevich covers by

𝐾 -varieties.

We now prove (i) for algebraic spaces. Again, passing to a Nisnevich cover, we may as-

sume that 𝑋 is a 𝐾 -variety. We claim that 𝕄(𝑌) is spanned over 𝕄(𝐾) by classes [𝑍] of
proper morphisms 𝑍 → 𝑌 , where 𝑍 is a smooth 𝐾 -variety. Indeed, let 𝑢 ∶ 𝑈 → 𝑌 be an

arbitrary morphism, where 𝑈 is an integral 𝐾 -variety. By Nagata compactification, as in Con-

rad, Lieblich, and Olsson [40, Theorem 1.2.1], 𝑢 can be factored as a dense open immersion

𝑈 ↪ 𝑉 followed by a proper morphism 𝑉 → 𝑌 , where 𝑉 is an integral algebraic space

over 𝐾 . By Chow’s lemma for algebraic spaces, as in Knutson [95, IV, Theorem 3.1], there

exists a 𝐾 -variety𝑊 and a projective birational morphism𝑊 → 𝑉 . Applying a resolution of

singularities, we may assume that 𝑊 is smooth. Now 𝑊 → 𝑌 is proper, and the difference

[𝑊 ]− [𝑈 ] is a sum of lower dimensional classes. An induction on the dimension of 𝑈 verifies

the claim.

Now, let ℎ∶ 𝑍 → 𝑌 be a proper morphism, where 𝑍 is a smooth 𝐾 -variety. Passing to a

Nisnevich cover of 𝑌 by 𝐾 -varieties, one can show that Ψ𝑓 ∘𝑔([𝑍]) = ℎ!(MF𝑓 ∘𝑔∘ℎ). On the

other hand, we have Ψ𝑓 ([𝑍]) = (𝑔 ∘ ℎ)!(MF𝑓 ∘𝑔∘ℎ) by definition. This completes the proof

since such classes [𝑍] span𝕄(𝑌) over𝕄(𝐾).

B.1.5. Theorem. Let 𝒳 be a stack over 𝐾 that is Nisnevich locally a quotient stack in the sense

of §6.2.2, and let 𝑓 ∶ 𝒳 → 𝔸1 be a morphism. Write 𝒳0 = 𝑓 −1(0). Then there is a unique

𝕄̂(𝐾)-linear map

Ψ𝑓 ∶ 𝕄̂(𝒳) ⟶ 𝕄̂μ̂(𝒳0) ,

called the nearby cycle map of 𝑓 , such that for any 𝐾 -scheme 𝑌 and any smooth morphism
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𝑔 ∶ 𝑌 → 𝒳 , we have a commutative diagram

𝕄̂(𝒳) 𝕄̂(𝑌)

𝕄̂μ̂(𝒳0) 𝕄̂μ̂(𝑌0) ,

Ψ𝑓

𝑔∗

 Ψ𝑓 ∘𝑔

𝑔∗
(B.1.5.1)

where the right-hand map is defined in §B.1.2.

We then define the vanishing cycle map of 𝑓 to be the map

Φ𝑓 = Ψ𝑓 − 𝜄μ̂ ∘ 𝑖∗ ∶ 𝕄̂(𝒳) ⟶ 𝕄̂μ̂(𝒳0) ,

where 𝑖 ∶ 𝒳0 ↪ 𝒳 and 𝜄μ̂ ∶ 𝕄̂(𝒳0) ↪ 𝕄̂μ̂(𝒳0) are the inclusions.

Proof. Let (𝑗𝑖 ∶ 𝒳𝑖 → 𝒳)𝑖∈𝐼 be a Nisnevich cover, where each 𝒳𝑖 ≃ 𝑈𝑖/𝐺𝑖, with 𝑈𝑖 an algeb-

raic space over 𝐾 , acted on by a group 𝐺𝑖 ≃ GL(𝑛𝑖) for some 𝑛𝑖. Let 𝜋𝑖 ∶ 𝑈𝑖 → 𝒳𝑖 be the

projection.

First, note that the condition on Ψ𝑓 implies that the same condition holds when 𝑌 is an

algebraic space, with the right-hand map in (B.1.5.1) defined in §B.1.3. This can be seen by

passing to a Nisnevich cover of 𝑌 by 𝐾 -varieties, and applying Theorem 5.3.3 to this cover.

To define the map Ψ𝑓 , by Theorem 5.3.3, it is enough to define it on each 𝒳𝑖, and then

verify that they agree on overlaps. Let 𝑎 ∈ 𝕄̂(𝒳) be an element. We define the element

Ψ𝑓 (𝑎) ∈ 𝕄̂μ̂(𝒳0) by giving its pullbacks Ψ𝑓 (𝑎)𝑖 = 𝑗∗𝑖 ∘ Ψ𝑓 (𝑎) ∈ 𝕄̂μ̂(𝒳𝑖,0) for each 𝑖, where
𝒳𝑖,0 = 𝒳𝑖 ×𝒳 𝒳0. The condition on Ψ𝑓 forces

Ψ𝑓 (𝑎)𝑖 = 𝑗∗𝑖 ∘ Ψ𝑓 (𝑎) = [𝐺𝑖]−1 ⋅ (𝜋𝑖)! ∘ 𝜋∗𝑖 ∘ 𝑗∗𝑖 ∘ Ψ𝑓 (𝑎)
= [𝐺𝑖]−1 ⋅ (𝜋𝑖)! ∘ Ψ𝑓 ∘𝑗𝑖∘𝜋𝑖 ∘ 𝜋∗𝑖 ∘ 𝑗∗𝑖 (𝑎) ,

where [𝐺𝑖] ∈ 𝕄̂(𝐾) is the class of 𝐺𝑖 and is invertible in 𝕄̂(𝐾), and we applied (5.2.6.2) to 𝜋𝑖,

using the fact that 𝐺𝑖 is special. This shows that if the map Ψ𝑓 exists, then it is unique.

To check that the elements Ψ𝑓 (𝑎)𝑖 agree on overlaps, let 1, 2 ∈ 𝐼 be two indices, and form
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the pullback squares

𝑈″ 𝑈 ′1 𝑈1

𝑈 ′2 𝒳1,2 𝒳1

𝑈2 𝒳2 𝒳 ,

𝜋″2

𝜋″1
⌜

𝑗″2

𝜋 ′1
⌜

 𝜋1
𝜋 ′2

𝑗″1
⌜

𝑗′2

𝑗
′1

⌜

 𝑗1
𝜋2 𝑗2

(B.1.5.2)

where 𝑈 ′1 , 𝑈 ′2 , 𝑈″ are algebraic spaces. We need to show that (𝑗′2)∗(Ψ𝑓 (𝑎)1) = (𝑗′1)∗(Ψ𝑓 (𝑎)2).
We have

(𝑗′2)∗(Ψ𝑓 (𝑎)1)
= [𝐺1]−1 ⋅ (𝑗′2)∗ ∘ (𝜋1)! ∘ Ψ𝑓 ∘𝑗1∘𝜋1 ∘ (𝑗1 ∘ 𝜋1)∗(𝑎)
= [𝐺1]−1 ⋅ (𝜋 ′1)! ∘ (𝑗″2 )∗ ∘ Ψ𝑓 ∘𝑗1∘𝜋1 ∘ (𝑗1 ∘ 𝜋1)∗(𝑎)
= [𝐺1]−1 ⋅ (𝜋 ′1)! ∘ Ψ𝑓 ∘𝑗1∘𝜋1∘𝑗″2 ∘ (𝑗1 ∘ 𝜋1 ∘ 𝑗″2 )∗(𝑎)
= [𝐺1]−1 ⋅ [𝐺2]−1 ⋅ (𝜋 ′1)! ∘ (𝜋″2 )! ∘ (𝜋″2 )∗ ∘ Ψ𝑓 ∘𝑗1∘𝜋1∘𝑗″2 ∘ (𝑗1 ∘ 𝜋1 ∘ 𝑗″2 )∗(𝑎)
= [𝐺1]−1 ⋅ [𝐺2]−1 ⋅ (𝜋 ′1 ∘ 𝜋″2 )! ∘ Ψ𝑓 ∘𝑗1∘𝜋1∘𝑗″2 ∘𝜋″2 ∘ (𝑗1 ∘ 𝜋1 ∘ 𝑗″2 ∘ 𝜋″2 )∗(𝑎) ,

where we applied (5.2.3.2) in the second step, Theorem B.1.4 (ii) in the third and fifth steps,

and (5.2.6.2) in the fourth step. This expression is now symmetric in the indices 1 and 2, so the
element Ψ𝑓 (𝑎) is well-defined.

It now remains to show that the map Ψ𝑓 satisfies the required condition. Let 𝑌 be a 𝐾 -

variety and 𝜋 ∶ 𝑌 → 𝒳 a smooth morphism. For each 𝑖 ∈ 𝐼 , write 𝑌𝑖 = 𝑌 ×𝒳 𝒳𝑖. Then

(𝑘𝑖 ∶ 𝑌𝑖 → 𝑌)𝑖∈𝐼 is a Nisnevich cover by algebraic spaces, and it suffices to show that

𝑘∗𝑖 ∘ 𝑔∗ ∘ Ψ𝑓 = 𝑘∗𝑖 ∘ Ψ𝑓 ∘𝑔 ∘ 𝑔∗ (B.1.5.3)

for each 𝑖. Consider the diagram

𝑉𝑖 𝑌𝑖 𝑌

𝑈𝑖 𝒳𝑖 𝒳 ,

𝜌𝑖

𝑔′𝑖
⌜

𝑘𝑖

𝑔𝑖 ⌜

 𝑔
𝜋𝑖 𝑗𝑖

(B.1.5.4)

where all squares are pullback squares. In particular, 𝜌𝑖 is a principal 𝐺𝑖-bundle. For any
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𝑎 ∈ 𝕄̂(𝒳), we have

𝑘∗𝑖 ∘ 𝑔∗ ∘ Ψ𝑓 (𝑎)
= 𝑔∗𝑖 (Ψ𝑓 (𝑎)𝑖)
= [𝐺𝑖]−1 ⋅ 𝑔∗𝑖 ∘ (𝜋𝑖)! ∘ Ψ𝑓 ∘𝑗𝑖∘𝜋𝑖 ∘ (𝑗𝑖 ∘ 𝜋𝑖)∗(𝑎)
= [𝐺𝑖]−1 ⋅ (𝜌𝑖)! ∘ (𝑔′𝑖 )∗ ∘ Ψ𝑓 ∘𝑗𝑖∘𝜋𝑖 ∘ (𝑗𝑖 ∘ 𝜋𝑖)∗(𝑎)
= [𝐺𝑖]−1 ⋅ (𝜌𝑖)! ∘ Ψ𝑓 ∘𝑗𝑖∘𝜋𝑖∘𝑔′𝑖 ∘ (𝑗𝑖 ∘ 𝜋𝑖 ∘ 𝑔′𝑖 )∗(𝑎)
= [𝐺𝑖]−1 ⋅ (𝜌𝑖)! ∘ Ψ𝑓 ∘𝑔∘𝑘𝑖∘𝜌𝑖 ∘ (𝑔 ∘ 𝑘𝑖 ∘ 𝜌𝑖)∗(𝑎)
= [𝐺𝑖]−1 ⋅ (𝜌𝑖)! ∘ 𝜌∗𝑖 ∘ Ψ𝑓 ∘𝑔∘𝑘𝑖 ∘ (𝑔 ∘ 𝑘𝑖)∗(𝑎)
= Ψ𝑓 ∘𝑔∘𝑘𝑖 ∘ (𝑔 ∘ 𝑘𝑖)∗(𝑎)
= 𝑘∗𝑖 ∘ Ψ𝑓 ∘𝑔 ∘ 𝑔∗(𝑎) ,

where we applied the monodromic version of (5.2.3.2) in the third step, Theorem B.1.4 (ii) in

the fourth, sixth, and eighth steps, and the monodromic version of (5.2.6.2) in the seventh step.

This proves the desired identity (B.1.5.3).

B.1.6. The motivic Milnor fibre. Let𝒳 be a stack over 𝐾 that is Nisnevich locally a quotient

stack as in §6.2.2, and let 𝑓 ∶ 𝒳 → 𝔸1 be a morphism. Write𝒳0 = 𝑓 −1(0). Themotivic Milnor

fibre of 𝑓 is the element

MF𝑓 = Ψ𝑓 ([𝒳]) ∈ 𝕄̂μ̂(𝒳0) .

We relate this to the description of the motivic Milnor fibre for schemes in §6.2.3. Suppose

that we are given a resolution of 𝑓 , which is a representable proper morphism 𝜋 ∶ 𝒳 → 𝒳 ,

such that it restricts to an isomorphism on 𝜋−1(𝒳 ∖ 𝒳0), and 𝜋−1(𝒳0) is a simple normal

crossings divisor in 𝒳 , in the sense that it is so after pulling back along smooth morphisms

from schemes. Let (ℰ𝑖)𝑖∈𝐽 be the family of irreducible components of 𝜋−1(𝒳0), and define ℰ ∘𝐼

and ℰ̃ ∘𝐼 for non-empty 𝐼 ⊂ 𝐽 similarly to §6.2.3, where ℰ̃ ∘𝐼 carries a natural μ̂-action. We then

claim that

MF𝑓 = ∑
∅≠𝐼⊂𝐽

(1 − 𝕃)|𝐼 |−1 [ℰ̃ ∘𝐼 ] . (B.1.6.1)

Indeed, this can be shown by a similar argument as in the proof of Theorem B.1.5, by first
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passing to a Nisnevich cover by quotient stacks, then using the relation (5.2.6.2) to further

reduce to the case of algebraic spaces, and finally passing to a Nisnevich cover again to reduce

to the case of affine varieties.

B.1.7. Theorem. Let𝒳,𝒴 be stacks over𝐾 that are Nisnevich locally quotient stacks as in §6.2.2.

(i) Let 𝑔 ∶ 𝒴 → 𝒳 be a proper morphism, and 𝑓 ∶ 𝒳 → 𝔸1 a morphism. Then we have a

commutative diagram

𝕄̂(𝒴) 𝕄̂(𝒳)

𝕄̂μ̂(𝒴0) 𝕄̂μ̂(𝒳0) .

𝑔!

Ψ𝑓 ∘𝑔  Ψ𝑓

𝑔!

(B.1.7.1)

(ii) Let 𝑔 ∶ 𝒴 → 𝒳 be a smooth morphism, and 𝑓 ∶ 𝒳 → 𝔸1 a morphism. Then we have a

commutative diagram

𝕄̂(𝒳) 𝕄̂(𝒴)

𝕄̂μ̂(𝒳0) 𝕄̂μ̂(𝒴0) .

𝑔∗

Ψ𝑓  Ψ𝑓 ∘𝑔

𝑔∗
(B.1.7.2)

In particular, we haveMF𝑓 ∘𝑔 = 𝑔∗(MF𝑓 ).

Proof. For (i), we first restrict to the case when 𝑔 is representable. By Theorem B.1.5, the map

Ψ𝑓 is determined by pullbacks along smooth morphisms from 𝐾 -varieties to 𝒳 , so we may

assume that 𝒳 is a 𝐾 -variety, and𝒴 is an algebraic space that is proper over 𝒳 . This case is

covered by Theorem B.1.4 (i).

For the general case, similarly, we may assume that 𝒳 = 𝑋 is a 𝐾 -variety. It suffices to

show that 𝑔! ∘ Ψ𝑓 ∘𝑔([𝑍]) = Ψ𝑓 ∘ 𝑔!([𝑍]) for smooth 𝐾 -varieties 𝑍 mapping to 𝒴 , as these

classes span 𝕄̂(𝒴) over 𝕄̂(𝐾). Since 𝒴 is proper over 𝑋 and has affine stabilizers, it has

finite inertia, and admits a coarse space 𝜋𝒴 ∶ 𝒴 → 𝑌 by the Keel–Mori theorem [39; 89]. The

morphism 𝜋𝒴 is a proper universal homeomorphism.

By Rydh’s compactification theorem for representable morphisms of Deligne–Mumford

stacks [137, Theorem B], we may choose a relative compactification𝒵 of 𝑍 over𝒴 , such that

there is a dense open immersion 𝑖 ∶ 𝑍 ↪ 𝒵 and a proper representable morphism ℎ∶ 𝒵 → 𝒴 .

In particular, 𝒵 also has finite inertia, and admits a coarse space 𝜋𝒵 ∶ 𝒵 → 𝑍 , which can be
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seen as a relative compactification of 𝑍 over 𝑌 . We have a commutative diagram

𝑍 𝒵 𝑍

𝒴 𝑌

𝑋 ,

𝑖

ℎ
𝜋𝒵

 ℎ
𝜋𝒴

𝑔  𝑔

(B.1.7.3)

where 𝑔 and ℎ are the induced morphisms, and all morphisms except 𝑖 are proper. It is then
enough to show that

(𝜋𝒵 )! ∘ Ψ𝑓 ∘𝑔∘ℎ([𝑍]) = Ψ𝑓 ∘𝑔∘ℎ ∘ (𝜋𝒵 )!([𝑍]) , (B.1.7.4)

since the compatibility with pushing forward along ℎ and 𝑔 ∘ ℎ is covered by the previous

case.

We now apply Bergh and Rydh’s divisorialification theorem [14, Theorem A] to a desingu-

larization of the pair (𝒵,𝒵 ∖ 𝑍) (see, for example, [56]), which gives a representable proper

morphism 𝒵 → 𝒵 that is an isomorphism on the preimage of 𝑍 , such that 𝒵 ∖ 𝑍 = 𝒟
is a simple normal crossings divisor on 𝒵 , with smooth irreducible components 𝒟𝑖 ⊂ 𝒵 ,

and for each 𝑥 ∈ 𝒵 , writing 𝐼𝑥 = {𝑖 ∈ 𝐼 ∣ 𝑥 ∈ 𝒟𝑖}, étale locally around 𝑥 , one has

𝒵 ∼ ∏𝑖∈𝐼𝑥 [𝔸1/μ𝑛𝑖] × 𝔸𝑑−|𝐼𝑥 |, where 𝑑 = dim𝒵 , each μ𝑛𝑖 acts on 𝔸1 by scaling, and 𝒟𝑖 cor-

responds to the locus where the 𝑖-th factor is zero; the number 𝑛𝑖 is the order of the generic
stabilizer of 𝒟𝑖.

From now on, we assume that 𝒵 = 𝒵 , since again, pushing forward along the represent-

able morphism 𝒵 → 𝒵 and the corresponding morphism of coarse spaces is already dealt

with.

Now, choose a resolution 𝜋 ∶ 𝒵 → 𝒵 for the morphism𝒵 → 𝔸1, which is a composition

of blow-ups along smooth centres. Then𝒵 still has the same local description as before. The

local description implies that the coarse space of 𝒵 , denoted 𝑍 , is a smooth algebraic space,

and can be seen as a resolution for the morphism 𝑍 → 𝔸1.

For each 𝑖 ∈ 𝐼 , let 𝒟̃𝑖 ⊂ 𝒵 be the strict transform of 𝒟𝑖, which is a smooth divisor,

and let (ℰ𝑗 ⊂ 𝒵)𝑗∈𝐽 be the family of irreducible components of 𝒵0. Then by construction,

all the divisors 𝒟̃𝑖, ℰ𝑗 ⊂ 𝒵 have simple normal crossings, and 𝒵 ∖ ⋃𝑖∈𝐼 𝒟̃𝑖 is an algebraic
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space. Let 𝐷̃𝑖, 𝐸𝑗 ⊂ 𝑍 be the corresponding divisors in the coarse spaces. For 𝐼 ′ ⊂ 𝐼 , write
𝒟𝐼 ′ = ⋂𝑖∈𝐼 ′ 𝒟𝑖 and 𝒟̃𝐼 ′ = ⋂𝑖∈𝐼 ′ 𝒟̃𝑖, with the convention that 𝒟∅ = 𝒵 and 𝒟̃∅ = 𝒵 . Then,

each 𝒟̃𝐼 ′ can be seen as a resolution for the morphism 𝒟𝐼 ′ → 𝔸1. By §B.1.6, we have

(𝜋𝒵 )! ∘ Ψ𝑓 ∘𝑔∘ℎ([𝑍]) = ∑
𝐼 ′⊂𝐼

(−1)|𝐼 ′| ⋅ (𝜋𝒵 )! ∘ Ψ𝑓 ∘𝑔∘ℎ([𝒟𝐼 ′])

= ∑
𝐼 ′⊂𝐼

(−1)|𝐼 ′| ⋅ ∑
∅≠𝐽 ′⊂𝐽

(1 − 𝕃)|𝐽 ′|−1 [ℰ̃ ∘𝐽 ′ ∩ 𝒟̃𝐼 ′]

= ∑
∅≠𝐽 ′⊂𝐽

(1 − 𝕃)|𝐽 ′|−1 [ℰ̃ ∘𝐽 ′ \ ⋃
𝑖∈𝐼

𝒟̃𝑖]

= ∑
∅≠𝐽 ′⊂𝐽

(1 − 𝕃)|𝐽 ′|−1 [𝐸∘𝐽 ′ \ ⋃
𝑖∈𝐼

𝐷̃𝑖]

= Ψ𝑓 ∘𝑔∘ℎ ∘ (𝜋𝒵 )!([𝑍]) ,

where the second last step used the fact that each ℰ̃ ∘𝐽 ′ ∖ ⋃𝑖∈𝐼 𝒟̃𝑖 is an algebraic space.

For (ii), similarly, the case when 𝑔 is representable follows from Theorem B.1.4 (ii). For the

general case, we may assume that 𝒳 is a 𝐾 -variety. Since Ψ𝑓 ∘𝑔 is determined by pullbacks

along smooth morphisms from schemes to𝒴 , we can also assume that𝒴 is a 𝐾 -variety, and

the result follows from Theorem B.1.4 (ii).

The final statement follows from applying (ii) to the element [𝒳] ∈ 𝕄̂(𝒳).

B.1.8. Remark. The length of the proof of TheoremB.1.7 is primarily due to the case of pushing

forward along proper morphisms that are not necessarily representable. We will indeed need

this general case in the proof of one of our main results, Theorem B.2.1, where 𝑔 will be taken

to be a weighted blow-up in the sense of §B.2.3.

B.2 The local model

B.2.1. Theorem. Suppose that we are given the following data:

• A finite-dimensional 𝔾m-representation 𝑉 over 𝐾 . Let

𝑉 = ⨁
𝑘∈ℤ

𝑉𝑘

be the decomposition into weight spaces. Write 𝑉+ = ⨁𝑘>0 𝑉𝑘 .
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• A 𝐾 -variety 𝑈 acted on by 𝔾m, and a 𝔾m-equivariant étale morphism 𝜄 ∶ 𝑈 → 𝑉 .

Write 𝑈 0 = 𝑈𝔾m for the fixed locus, and 𝑈+ = Map𝔾m(𝔸1, 𝑈 ) for the attractor. For a

point 𝑢0 ∈ 𝑈 0(𝐾), write

𝑈+(𝑢0) = {𝑢 ∈ 𝑈 | lim𝑡→0 𝑡 ⋅ 𝑢 = 𝑢0}

for the fibre of the limit map 𝑈+ → 𝑈 0 at 𝑢0, which is canonically isomorphic to 𝑉+.

• A 𝔾m-invariant function 𝑓 ∶ 𝑈 → 𝔸1, with 𝑓 (𝑢0) = 0.

Then we have the identities

∫
𝑢∈𝑈+(𝑢0)

Ψ𝑓 ([𝑈 ])(𝑢) = 𝕃dim𝑉+ ⋅ Ψ𝑓 ([𝑈 0])(𝑢0) , (B.2.1.1)

∫
𝑢∈𝑈+(𝑢0)

Φ𝑓 ([𝑈 ])(𝑢) = 𝕃dim𝑉+ ⋅ Φ𝑓 ([𝑈 0])(𝑢0) . (B.2.1.2)

Moreover, these hold as identities in𝕄μ̂(𝑈 0), where we vary 𝑢0 ∈ 𝑈 0.

This theorem can be seen as a generalization of the integral identity conjectured by Kont-

sevich and Soibelman [97, Conjecture 4], and proved by Lê [101], who restricted to the case

when the 𝔾m-action on 𝑉 only has weights −1, 0, and 1. Compare also Joyce and Song [87,

Theorem 5.11], where a similar identity involving Euler characteristics is proved, with the

same restriction on the weights.

The rest of this section is devoted to the proof of Theorem B.2.1. In the following, we

first provide preliminaries on weighted projective spaces and weighted blow-ups, and prove

some preparatory results. Then, in Lemma B.2.8, we establish a weaker version of the theorem,

using the theory of motivic nearby cycles for stacks developed in §B.1. Finally, in §B.2.9, we

show that the weaker version implies the stronger version.

B.2.2. Weighted projective spaces. Let 𝑉 be a finite-dimensional 𝔾m-representation over 𝐾 ,

with only positive weights. The weighted projective space of 𝑉 is the quotient stack

wℙ(𝑉) = (𝑉 ∖ {0})/𝔾m .
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This is a proper Deligne–Mumford stack over 𝐾 , since we have the identification

wℙ(𝑉) ≃ ℙ(𝑉 )/
dim𝑉
∏
𝑘=1

μ𝑛𝑘 ,

where ℙ(𝑉) is the usual projective space, and using a basis of eigenvectors of 𝑉 , each 𝑛𝑘 is

the weight of the 𝑘-th coordinate, and μ𝑛𝑘 acts by scaling the 𝑘-th coordinate.

We also consider the coarse space cwℙ(𝑉) of wℙ(𝑉), which is also given by

cwℙ(𝑉) = Proj𝐾[𝑉 ] ,

where 𝐾[𝑉 ] is the free polynomial algebra on 𝑉 , with ℤ-grading given by the weights of 𝑉 .

It is an integral, normal, projective 𝐾 -variety.

B.2.3. Weighted blow-ups. Let 𝑉 be a finite-dimensional 𝔾m-representation over 𝐾 , with

only positive weights. Let 𝑈 be a smooth𝐾 -scheme, 𝑈0 ⊂ 𝑈 a reduced closed subscheme, and

let 𝑝 ∶ 𝑈 → 𝑉 be a smooth morphism such that 𝑈0 = 𝑝−1(0).
Define the weighted blow-up of 𝑈 along 𝑈0, with weights given by those of 𝑉 , as the quo-

tient stack

wBl𝑈0(𝑈 ) = {(𝑡, 𝑣 , 𝑢) ∈ 𝔸1 × (𝑉 ∖ {0}) × 𝑈 | 𝑝(𝑢) = 𝑡 ⋅ 𝑣}/𝔾m , (B.2.3.1)

where 𝑡 ⋅(−) denotes the𝔾m-action naturally extended to 𝑡 ∈ 𝔸1, and𝔾m acts with weight −1
on 𝔸1, with the given weights on 𝑉 , and trivially on 𝑈 . Note that we have an isomorphism
wBl𝑈0(𝑈 ) ≃ 𝑈 ×𝑉 wBl{0}(𝑉 ).

The natural projection wBl𝑈0(𝑈 ) → 𝑈 is proper. It restricts to an isomorphism over 𝑈 ∖𝑈0,

and has fibres wℙ(𝑉) over points in 𝑈0. In particular, we have the relation

[wBl𝑈0(𝑈 )] = 𝕃dim𝑉 − 1
𝕃 − 1 ⋅ [𝑈0] + [𝑈 ∖ 𝑈0] (B.2.3.2)

of motives in 𝕄̂(𝑈 ).

B.2.4. Lemma. Let 𝑈 be a separated algebraic space of finite type over𝐾 , acted on by a torus 𝑇 ≃
𝔾𝑛

m for some 𝑛, such that points in 𝑈 have finite stabilizers. Let 𝒳 = 𝑈/𝑇 be the quotient stack.

Then𝒳 admits a coarse space 𝜋 ∶ 𝒳 → 𝑋 which is a proper universal homeomorphism, and
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we have an isomorphism

𝜋! = (𝜋∗)−1 ∶ 𝕄̂(𝒳) ∼⟶ 𝕄̂(𝑋) . (B.2.4.1)

A similar statement holds for 𝕄̂μ̂(𝒳).

Proof. Since 𝑈 is separated, the inertia ℐ𝒳 is a closed substack of 𝐻 × 𝒳 for some finite

group 𝐻 ⊂ 𝑇 , and is thus finite over 𝒳 . It then follows from the Keel–Mori theorem [39; 89]

that 𝒳 admits a coarse space 𝜋 ∶ 𝒳 → 𝑋 , and that 𝜋 is a proper universal homeomorphism.

To prove (B.2.4.1), stratifying 𝑈 by locally closed subspaces with constant stabilizers, we

may assume that all points in 𝑈 have the same stabilizers 𝐻 ⊂ 𝑇 , so that 𝑋 ≃ 𝑈/(𝑇/𝐻).
To show that 𝜋! ∘ 𝜋∗ = id, it is enough to show that for any 𝕂-variety 𝑍 and any morphism

𝑔 ∶ 𝑍 → 𝑋 , we have [𝒵] = [𝑍] in 𝕄̂(𝑋), where 𝒵 = [𝑍 ×𝑋 𝒳]. Writing 𝑉 = 𝑍 ×𝑋 𝑈 ,

we have 𝒵 ≃ 𝑉/𝑇 and 𝑍 ≃ 𝑉/(𝑇/𝐻), so that [𝒵] = (𝕃 − 1)−dim 𝑇 ⋅ [𝑉 ] = [𝑍], where we
used the fact that 𝑇/𝐻 is a torus of the same dimension as 𝑇 . A similar argument shows that

𝜋∗ ∘ 𝜋! = id.

B.2.5. Lemma. In the situation of Theorem B.2.1, the locus in 𝑈 where the morphism 𝜄 preserves
𝔾m-stabilizers is open.

Proof. For each 𝑛 > 1, let 𝜁𝑛 ∈ 𝔾m(𝐾) be a primitive 𝑛-th root of unity. It is enough to show

that the locus of 𝑢 ∈ 𝑈 such that 𝜁𝑛 ⋅ 𝑢 ≠ 𝑢 and 𝜄(𝜁𝑛 ⋅ 𝑢) = 𝜄(𝑢) is closed. The latter condition
is equivalent to 𝜄(𝑢) ∈ 𝑉(𝑛), where 𝑉(𝑛) = ⨁𝑘∈ℤ 𝑉𝑘𝑛 ⊂ 𝑉 . Write 𝑈(𝑛) = 𝜄−1(𝑉(𝑛)), which is

étale over 𝑉(𝑛), with a μ𝑛-action on its fibres, induced from the 𝔾m-action on 𝑈 . The locus

where this action is trivial is open in 𝑈(𝑛), proving the claim.

B.2.6. Lemma. In the situation of Theorem B.2.1, suppose that 𝑈 is affine, and 𝜄 preserves 𝔾m-

stabilizers and sends closed 𝔾m-orbits to closed 𝔾m-orbits. Then the affine GIT quotient 𝑈//𝔾m

is normal.

Proof. By Alper [2, Theorem 5.1], since 𝜄 is étale and preserves 𝔾m-stabilizers, the induced

morphism ̄𝜄 ∶ 𝑈 //𝔾m → 𝑉//𝔾m is étale at [𝑢] ∈ (𝑈//𝔾m)(𝐾) for points 𝑢 ∈ 𝑈(𝐾) such that

the 𝔾m-orbits of 𝑢 and 𝜄(𝑢) are closed. By the assumption on closed orbits, it is enough to

require that the𝔾m-orbit of 𝑢 is closed. Since every 𝑆-equivalence class in 𝑈 contains a closed

orbit, the morphism ̄𝜄 is étale, and it is enough to check that 𝑉//𝔾m is normal. This follows
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from a standard fact in toric geometry, as in Cox, Little, and Schenck [41, Theorem 1.3.5], since

𝑉//𝔾m ≃ Spec𝐾[𝑆] for a saturated submonoid 𝑆 ⊂ ℤdim𝑉 .

B.2.7. Lemma. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of integral 𝐾 -varieties. If 𝑓 is bijective on 𝐾 -

points and 𝑌 is normal, then 𝑓 is an isomorphism.

Proof. By generic flatness and generic reducedness, 𝑓 is flat over a dense open subset 𝑈 ⊂ 𝑌
with fibres Spec𝐾 , and hence étale, hence an isomorphism 𝑓 −1(𝑈 ) ∼→ 𝑈 . It follows that 𝑓 is

birational. Now, a version of Zariski’s main theorem [64, IV-3, Corollary 8.12.10] implies that

𝑓 is an open immersion, hence an isomorphism.

B.2.8. Lemma. In the situation of Theorem B.2.1, write 𝑉− = ⨁𝑘<0 𝑉𝑘 , and for a point 𝑢0 ∈
𝑈 0(𝐾), consider the repeller

𝑈−(𝑢0) = {𝑢 ∈ 𝑈 | lim𝑡→∞ 𝑡 ⋅ 𝑢 = 𝑢0} ,

defined in the same way as 𝑈+(𝑢0) for the opposite 𝔾m-action on 𝑈 .

Then we have the identity

∫
𝑢∈𝑈+(𝑢0)

Ψ𝑓 ([𝑈 ])(𝑢) − ∫
𝑢∈𝑈−(𝑢0)

Ψ𝑓 ([𝑈 ])(𝑢) = (𝕃dim𝑉+ − 𝕃dim𝑉−) ⋅ Ψ𝑓 ([𝑈 0])(𝑢0) . (B.2.8.1)

Moreover, this holds as an identity of monodromic motives on 𝑈 0, where we vary 𝑢0 ∈ 𝑈 0.

Proof. Since 𝑈 is smooth, by Sumihiro [140, Corollary 2], 𝑈 admits a 𝔾m-invariant affine

open cover. We may thus assume that 𝑈 is affine. Moreover, we apply this result whenever

we shrink 𝑈 , so we may assume that 𝑈 is affine and connected throughout the proof.

Write𝑈+, 𝑈− for the attractor and repeller of the𝔾m-action on𝑈 . ByHalpern-Leistner [65,

Propositions 1.3.1 and 1.3.2], the morphism 𝑈+ → 𝜄−1(𝑉+×𝑉0) is étale and a closed immersion,

and hence an open immersion. We may thus remove the closed subsets 𝜄−1(𝑉+ ×𝑉0)∖𝑈+ and

𝜄−1(𝑉− × 𝑉0) ∖ 𝑈− from 𝑈 , and assume that 𝑈± = 𝜄−1(𝑉± × 𝑉0). The morphism 𝜄 now sends

closed 𝔾m-orbits to closed 𝔾m-orbits.

By Lemma B.2.5, we may also assume that 𝜄 preserves𝔾m-stabilizers, by replacing 𝑈 with

a 𝔾m-invariant open neighbourhood of 𝑈 0.
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Let 𝑈⊖ = 𝑈 ∖ 𝑈−, and let 𝑈+⊖ = 𝑈+ ∖ 𝑈 0 ⊂ 𝑈⊖. Consider the weighted blow-up

𝜋⊖ ∶ 𝑈̃⊖ = wBl𝑈+⊖(𝑈⊖) ⟶ 𝑈⊖ ,

with weight 𝑘 along the 𝑉−𝑘-direction for 𝑘 > 0, and write ̃𝑓⊖ = 𝑓 ∘𝜋⊖. Explicitly, as in §B.2.3,

we may write

𝑊⊖ = {(𝑡, 𝑣−, 𝑢) ∈ 𝔸1 × (𝑉− ∖ {0}) × 𝑈⊖ | 𝜄(𝑢)− = 𝑡−1 ⋅ 𝑣−} ,
𝑈̃⊖ = 𝑊⊖/𝔾m ,

where 𝜄(𝑢)− is the projection of 𝜄(𝑢) to 𝑉−, and 𝔾m acts on 𝑊⊖ by 𝑠 ⋅ (𝑡, 𝑣−, 𝑢) = (𝑠−1𝑡, 𝑠−1 ⋅
𝑣−, 𝑢). Note that𝑊⊖ is smooth over 𝔸1 × (𝑉− ∖ {0}), and hence over 𝐾 . For any 𝑢 ∈ 𝑈+⊖ , by

Theorem B.1.7 (i), we have

∫
[𝑣−]∈wℙ(𝑉−)

Ψ ̃𝑓⊖([𝑈̃⊖])([𝑣−], 𝑢)

= Ψ𝑓 ([𝑈̃⊖])(𝑢)

= Ψ𝑓 ([wℙ(𝑉−) × 𝑈+⊖] + [𝑈⊖ ∖ 𝑈+⊖])(𝑢)

= ([wℙ(𝑉−)] − 1) ⋅ Ψ𝑓 ([𝑈+⊖])(𝑢) + Ψ𝑓 ([𝑈⊖])(𝑢)

= (𝕃
dim𝑉− − 1
𝕃 − 1 − 1) ⋅ Ψ𝑓 ([𝑈+⊖])(𝑢) + Ψ𝑓 ([𝑈 ])(𝑢) , (B.2.8.2)

and this holds as an identity of monodromic motives on 𝑈+⊖ .

Define 𝑝+ ∶ 𝑈+⊖ → 𝑈 0 by 𝑝+(𝑢) = lim𝑡→0 𝑡 ⋅ 𝑢. Then 𝑓 (𝑢) = 𝑓 (𝑝+(𝑢)) for all 𝑢 ∈ 𝑈+⊖ ,

and by Theorem B.1.4 (ii), we have

Ψ𝑓 ([𝑈+⊖])(𝑢) = Ψ𝑓 ([𝑈 0])(𝑝+(𝑢)) (B.2.8.3)

for all 𝑢 ∈ 𝑈+⊖ . Again, this holds as an identity of monodromic motives on 𝑈+⊖ , where the

right-hand side means (𝑝+)∗ ∘ Ψ𝑓 ([𝑈 0]).
Now, consider the quotient stack

𝑈̌⊖ = 𝑊⊖/𝔾2
m , (B.2.8.4)

where 𝔾2
m acts on 𝑊⊖ by (𝑠1, 𝑠2) ⋅ (𝑡, 𝑣−, 𝑢) = (𝑠−11 𝑡, 𝑠−11 𝑠2 ⋅ 𝑣−, 𝑠2 ⋅ 𝑢). There is, by definition,

a principal 𝔾m-bundle 𝜋̃⊖ ∶ 𝑈̃⊖ → 𝑈̌⊖. There is a morphism ̌𝑓⊖ ∶ 𝑈̌⊖ → 𝔸1 induced by ̃𝑓⊖.
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Let 𝑈//𝔾m be the affine GIT quotient, and consider the reduced closed subscheme

𝑈̃ ⊂ cwℙ(𝑉+) × cwℙ(𝑉−) × (𝑈//𝔾m)

consisting of points ([𝜄(𝑢)+], [𝜄(𝑢)−], [𝑢]) and ([𝑣+], [𝑣−], [𝑢0]) for 𝑢 ∈ 𝑈 , 𝑣± ∈ 𝑉±∖{0}, and
𝑢0 ∈ 𝑈 0. There is a morphism ̃𝑓 ∶ 𝑈̃ → 𝔸1 induced by 𝑓 .

Consider the projection 𝜋̌⊖ ∶ 𝑈̌⊖ → 𝑈̃ given by (𝑡, 𝑣−, 𝑢) ↦ ([𝜄(𝑢)+], [𝑣−], [𝑢]). One can
check that fibres of the composition𝑊⊖ → 𝑈̃ are single 𝔾2

m-orbits. We thus have an induced

morphism 𝑊⊖//𝔾2
m

∼→ 𝑈̃ , which is an isomorphism by Lemma B.2.7. Here, we used the fact

that 𝑈̃ is normal by Lemma B.2.6, and the fact that 𝑊⊖ is integral since it is smooth and

connected. In other words, the morphism 𝜋̌⊖ is a coarse space map. In particular, it is proper

by Lemma B.2.4.

Since the projection 𝜋̃⊖ ∶ 𝑈̃⊖ → 𝑈̌⊖ is smooth and 𝜋̌⊖ is proper, by Theorem B.1.7 and

Lemma B.2.4, for any 𝑢 ∈ 𝑈+⊖ and [𝑣−] ∈ wℙ(𝑉−), we have

Ψ ̃𝑓⊖([𝑈̃⊖])([0, 𝑣−, 𝑢]) = Ψ ̌𝑓⊖([𝑈̌⊖])([0, 𝑣−, 𝑢])
= Ψ ̃𝑓 ([𝑈̃ ])([𝜄(𝑢)+], [𝑣−], [𝑝+(𝑢)]) , (B.2.8.5)

where [𝑢] = [𝑝+(𝑢)] in 𝑈//𝔾m. Moreover, this holds as an identity of monodromic motives

on wℙ(𝑉−) × 𝑈+⊖ .

Combining (B.2.8.2), (B.2.8.3), and (B.2.8.5), we obtain the identity

Ψ𝑓 ([𝑈 ])(𝑢) = ∫
[𝑣−]∈wℙ(𝑉−)

Ψ ̃𝑓 ([𝑈̃ ])([𝜄(𝑢)+], [𝑣−], [𝑝+(𝑢)])

+ (1 − 𝕃dim𝑉− − 1
𝕃 − 1 ) ⋅ Ψ𝑓 ([𝑈 0])(𝑝+(𝑢)) , (B.2.8.6)

where 𝑢 ∈ 𝑈+⊕ and [𝑣−] ∈ wℙ(𝑉−). Integrating over 𝑢 ∈ 𝑈+(𝑢0) ∖ {𝑢0}, we obtain

∫
𝑢∈𝑈+(𝑢0)∖{𝑢0}

Ψ𝑓 ([𝑈 ])(𝑢) = (𝕃 − 1) ⋅ ∫
([𝑣+],[𝑣−])∈wℙ(𝑉+)×wℙ(𝑉−)

Ψ ̃𝑓 ([𝑈̃ ])([𝑣+], [𝑣−], [𝑢0])

+ (𝕃dim𝑉+ − 1) ⋅ (1 − 𝕃dim𝑉− − 1
𝕃 − 1 ) ⋅ Ψ𝑓 ([𝑈 0])(𝑢0) . (B.2.8.7)

Subtracting the analogous identity for integrating over 𝑈−(𝑢0)∖{𝑢0}, we arrive at the desired
identity (B.2.8.1).
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B.2.9. Proof of Theorem B.2.1. Consider the 𝔾m-representation 𝑉 ′ = 𝑉 × 𝔸1, with the 𝔾m-

action on 𝑉 as given, and on𝔸1 by scaling. Let 𝑈 ′ = 𝑈 ×𝔸1, with the𝔾m-action on 𝑈 as given,

and on 𝔸1 by scaling, and let 𝑓 ′ = 𝑓 ∘ pr1 ∶ 𝑈 ′ → 𝔸1, where pr1 ∶ 𝑈 ′ → 𝑈 is the projection.

Let 𝑢′0 = (𝑢0, 0) ∈ 𝑈 ′0 = 𝑈 0 × {0}. By Theorem B.1.4 (ii), we have Ψ𝑓 ′([𝑈 ′]) = pr∗1 ∘Ψ𝑓 ([𝑈 ]),
and similarly, Ψ𝑓 ′([𝑈 ′0]) = pr∗1 ∘ Ψ𝑓 ([𝑈 0]).

Applying Lemma B.2.8 to this new set of data, and simplifying the expression by the ob-

servations above, we obtain

𝕃 ⋅ ∫
𝑢∈𝑈+(𝑢0)

Ψ𝑓 ([𝑈 ])(𝑢) − ∫
𝑢∈𝑈−(𝑢0)

Ψ𝑓 ([𝑈 ])(𝑢) = (𝕃dim𝑉++1 − 𝕃dim𝑉−) ⋅ Ψ𝑓 ([𝑈 0])(𝑢0) .

Subtracting the original identity (B.2.8.1) from this, and dividing by𝕃−1, we obtain the desired
identity (B.2.1.1).

Finally, (B.2.1.2) follows from (B.2.1.1) by the definition of Φ𝑓 .

B.3 The motivic identity

B.3.1. In this section, we prove the main version of the integral identity, Theorem 7.4.2 using

the local model, Theorem B.2.1.

In the following, let𝒳 be a (−1)-shifted symplectic stack over 𝐾 as in Theorem 7.4.2. For

convenience, when dealing with rings of motives, we always take classical truncations, and

omit the subscript (−)cl if no ambiguity is present.

We will prove the theorem in two steps. First, in Lemma B.3.2, we show that the the-

orem holds for a stack if it holds for a Nisnevich cover of the stack, reducing it to the case of

fundamental stacks. Then, we deduce the case of fundamental stacks from the local version,

Theorem B.2.1.

B.3.2. Lemma. Let (𝒳𝑖,cl → 𝒳cl)𝑖∈𝐼 be a Nisnevich cover, and set 𝒳𝑖 = 𝒳𝑖,cl ×𝒳cl 𝒳cl, so that

each 𝒳𝑖 is equipped with an induced (−1)-shifted symplectic structure and orientation. Then, if

Theorem 7.4.2 holds for each 𝒳𝑖, then it holds for 𝒳 .
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Proof. For each 𝑖, consider the diagram

𝒢rad(𝒳𝑖,cl) ℱilt(𝒳𝑖,cl) 𝒳𝑖,cl

𝒢rad(𝒳cl) ℱilt(𝒳cl) 𝒳cl ,



gr ev



⌝

gr ev

(B.3.2.1)

where the left-hand square is a pullback square as in §3.8.2. Therefore, there is a commutative

diagram

𝕄̂μ̂(𝒢rad(𝒳𝑖,cl)) 𝕄̂μ̂(ℱilt(𝒳𝑖,cl)) 𝕄̂μ̂(𝒳𝑖,cl)

𝕄̂μ̂(𝒢rad(𝒳cl)) 𝕄̂μ̂(ℱilt(𝒳cl)) 𝕄̂μ̂(𝒳cl) ,

gr!  ev∗


gr!



 ev∗



(B.3.2.2)

where the vertical maps are the pullback maps.

By Halpern-Leistner [65, Corollary 1.1.7], we have 𝒢rad(𝒳𝑖,cl) ∼→ 𝒢rad(𝒳cl) ×𝒳 𝒳𝑖,cl

for all 𝑖. Therefore, the family (𝒢rad(𝒳𝑖) → 𝒢rad(𝒳))𝑖∈𝐼 is a Nisnevich cover on classical

truncations. By Theorem 5.3.3, it is enough to check the identity (7.4.2.2) after pulling back to

each 𝒢rad(𝒳𝑖,cl). But this follows from the identity (7.4.2.2) for each 𝒳𝑖, the commutativity

of (B.3.2.2), the relation (6.2.7.1) establishing the compatibility of the motivic Behrend function

with smooth pullbacks, and the fact that the rank of the tangent complex of dℱilt(𝒳𝑖) agrees
with that of dℱilt(𝒳) on the corresponding components, which follows from (3.8.3.2).

B.3.3. Lemma. Suppose we have a pullback diagram of d-critical stacks

𝒴 ′ 𝒴

𝒳 ′ 𝒳 ,

𝑓 ′

𝑔′

⌜

 𝑓
𝑔

(B.3.3.1)

where all morphisms are smooth and compatible with the d-critical structures.

Let 𝐾 1/2𝒳 → 𝒳 and 𝐾 1/2𝒴 → 𝒴 be orientations, not necessarily compatible with 𝑓 . Let

𝐾 1/2𝒳 ′ → 𝒳 ′ and 𝐾 1/2𝒴 ′ → 𝒴 ′ be the orientations induced by 𝐾 1/2𝒳 and 𝐾 1/2𝒴 , respectively, as

mentioned in §6.2.4. Then we have

𝑔′∗∘Υ(𝐾 1/2𝒴 ⊗𝑓 ∗(𝐾−1/2𝒳 )⊗det(𝕃𝒴/𝒳 )−1) = Υ(𝐾 1/2𝒴 ′ ⊗𝑓 ′∗(𝐾−1/2𝒳 ′ )⊗det(𝕃𝒴 ′/𝒳 ′)−1) (B.3.3.2)

in 𝕄̂μ̂(𝒴 ′), where Υ is the map from §6.1.4, and the parts in Υ(…) are line bundles with trivial

square, and can be seen as μ2-bundles.
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Proof. These line bundles have trivial square by Joyce [84, Lemma 2.58]. We have

𝑔′∗(𝐾 1/2𝒴 ⊗ 𝑓 ∗(𝐾−1/2𝒳 ) ⊗ det(𝕃𝒴/𝒳 )−1)
≃ 𝑔′∗(𝐾 1/2𝒴 ) ⊗ 𝑓 ′∗ ∘ 𝑔∗(𝐾−1/2𝒳 ) ⊗ det(𝑔′∗(𝕃𝒴/𝒳 ))−1

≃ 𝐾 1/2𝒴 ′ ⊗ det(𝕃𝒴 ′/𝒴 )−1 ⊗ 𝑓 ′∗(𝐾−1/2𝒳 ′ ) ⊗ 𝑓 ′∗ ∘ det(𝕃𝒳 ′/𝒳 ) ⊗ det(𝕃𝒴 ′/𝒳 ′)−1

≃ 𝐾 1/2𝒴 ′ ⊗ 𝑓 ′∗(𝐾−1/2𝒳 ′ ) ⊗ det(𝕃𝒴 ′/𝒳 ′)−1 ,

and applying Υ gives the desired identity.

B.3.4. Lemma. Let 𝒳 be an 𝑛-shifted symplectic stack over 𝐾 . Then we have an isomorphism

sf∗(𝕋dℱilt(𝒳)) ≃ op∗ ∘ sf∗(𝕃dℱilt(𝒳)[𝑛])

of perfect complexes on d𝒢rad(𝒳), where op is the involution of d𝒢rad(𝒳) induced by the

morphism (−)−1 ∶ ∗/𝔾m → ∗/𝔾m.

Proof. By Halpern-Leistner [65, Lemma 1.2.3], we have sf∗(𝕋dℱilt(𝒳)) ≃ tot∗(𝕋𝒳 )⩾0, where
(−)⩾0 denotes taking the part with non-negativeweights with respect to the natural𝔾m-action.

Consequently, we have op∗ ∘ sf∗(𝕋dℱilt(𝒳)) ≃ tot∗(𝕋𝒳 )⩽0. Its dual shifted by 𝑛 becomes

tot∗(𝕃𝒳 [𝑛])⩾0 ≃ tot∗(𝕋𝒳 )⩾0.

B.3.5. Proof of Theorem 7.4.2. By Lemma B.3.2, we may assume that 𝒳 is fundamental. Let

𝒳 ≃ 𝑆/𝐺, where 𝑆 is an affine𝐾 -variety, and𝐺 = GL(𝑛) for some 𝑛. The classical truncation
of the correspondence (7.4.2.1) can be written as

∐
𝜆 ∶ 𝔾m→𝐺

𝑆𝜆/𝐿𝜆
gr⟵ ∐

𝜆 ∶ 𝔾m→𝐺
𝑆𝜆,+/𝑃𝜆

ev⟶ 𝑆/𝐺 ,

with notations as in Example 3.2.4. The assumption on 𝐺 implies that all the groups 𝐿𝜆 and

𝑃𝜆 are special groups.

We fix a cocharacter 𝜆 ∶ 𝔾m → 𝐺, and prove the identity on the component 𝑆𝜆,+/𝑃𝜆. We

may assume that 𝑆𝜆,+ ≠ ∅.
By Joyce [84, Remark 2.47], shrinking 𝑆 if necessary, we may assume that there exists a

smooth affine 𝐾 -scheme 𝑈 acted on by 𝐺, and a 𝐺-invariant function 𝑓 ∶ 𝑈 → 𝔸1, such that

𝒳 is isomorphic as a d-critical stack to the critical locus Crit(𝑓 )/𝐺, and 𝑆 ≃ Crit(𝑓 ). We now
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have a commutative diagram

𝑈 𝜆 𝑈 𝜆,+ 𝑈

𝑈 𝜆/𝐿𝜆 𝑈 𝜆,+/𝑃𝜆 𝑈/𝐺 .

𝜋0

 𝑝 𝑖

 𝜋+

 𝜋 gr ev

(B.3.5.1)

Let 0 ∈ 𝑆𝜆 be a 𝐾 -point, and let 𝑉 = 𝕋𝑈 |0 be the tangent space. Consider the 𝔾m-actions

on 𝑈 and 𝑉 via the cocharacter 𝜆. By Luna [103, Lemma in §III.1], shrinking 𝑈 if necessary,

we may choose a 𝔾m-equivariant étale morphism 𝜄 ∶ 𝑈 → 𝑉 such that 𝜄(0) = 0. Applying

Theorem B.2.1 gives the identity

𝑝! ∘ 𝑖∗ ∘ Φ𝑓 ([𝑈 ]) = 𝕃dim𝑉 𝜆+ ⋅ Φ𝑓 ([𝑈 𝜆]) , (B.3.5.2)

where 𝑉 𝜆+ ⊂ 𝑉 is the subspace where 𝔾m acts with positive weights. Note that Φ𝑓 (𝑈 ) is

supported on 𝑆 by its definition. Let𝐾 1/2𝑆 be the orientation of the d-critical scheme 𝑆 induced

from that of 𝒳 . One computes that

gr! ∘ ev∗(𝜈mot
𝒳 )

= [𝑃𝜆]−1 ⋅ gr! ∘ 𝜋+! ∘ (𝜋+)∗ ∘ ev∗(𝜈mot
𝒳 )

= [𝑃𝜆]−1 ⋅ 𝜋0! ∘ 𝑝! ∘ 𝑖∗ ∘ 𝜋∗(𝜈mot
𝒳 )

= 𝕃dim𝐺/2 ⋅ [𝑃𝜆]−1 ⋅ 𝜋0! ∘ 𝑝! ∘ 𝑖∗(𝜈mot𝑆 )
= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅ 𝜋0! ∘ 𝑝! ∘ 𝑖∗(Φ𝑓 ([𝑈 ]) ⋅ Υ(𝐾 1/2𝑆 ⊗𝐾−1𝑈 |𝑆))
= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅

𝜋0! ∘ 𝑝!(𝑖∗ ∘ Φ𝑓 ([𝑈 ]) ⋅ 𝑖∗ ∘ 𝜋∗ ∘ Υ(𝐾 1/2𝒳 ⊗𝐾−1
𝑈/𝐺 |𝒳 ))

= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅
𝜋0! ∘ 𝑝!(𝑖∗ ∘ Φ𝑓 ([𝑈 ]) ⋅ (𝜋+)∗ ∘ ev∗ ∘ Υ(𝐾 1/2𝒳 ⊗𝐾−1

𝑈/𝐺 |𝒳 ))

= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅
𝜋0! ∘ 𝑝!(𝑖∗ ∘ Φ𝑓 ([𝑈 ]) ⋅ (𝜋+)∗ ∘ gr∗ ∘ Υ(𝐾 1/2

d𝒢rad(𝒳) ⊗𝐾−1
𝑈 𝜆/𝐿𝜆 |𝑆𝜆/𝐿𝜆))

= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅
𝜋0! ∘ 𝑝!(𝑖∗ ∘ Φ𝑓 ([𝑈 ]) ⋅ 𝑝∗ ∘ (𝜋0)∗ ∘ Υ(𝐾 1/2

d𝒢rad(𝒳) ⊗𝐾−1
𝑈 𝜆/𝐿𝜆 |𝑆𝜆/𝐿𝜆))
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= −𝕃dim𝐺/2−dim𝑉/2 ⋅ [𝑃𝜆]−1 ⋅
𝜋0! (𝑝! ∘ 𝑖∗ ∘ Φ𝑓 ([𝑈 ]) ⋅ (𝜋0)∗ ∘ Υ(𝐾 1/2

d𝒢rad(𝒳) ⊗𝐾−1
𝑈 𝜆/𝐿𝜆 |𝑆𝜆/𝐿𝜆))

= −𝕃dim𝐺/2−dim𝑉/2+dim𝑉 𝜆+ ⋅ [𝑃𝜆]−1 ⋅
𝜋0! (Φ𝑓 ([𝑈 𝜆]) ⋅ (𝜋0)∗ ∘ Υ(𝐾 1/2

d𝒢rad(𝒳) ⊗𝐾−1
𝑈 𝜆/𝐿𝜆 |𝑆𝜆/𝐿𝜆))

= −𝕃dim𝐺/2−dim𝑉/2+dim𝑉 𝜆+ ⋅ [𝑃𝜆]−1 ⋅
𝜋0! (Φ𝑓 ([𝑈 𝜆]) ⋅ Υ(𝐾 1/2

𝑆𝜆 ⊗𝐾−1
𝑈 𝜆 |𝑆𝜆))

= 𝕃dim𝐺/2−dim𝑉/2+dim𝑉 𝜆+−dim𝑉 𝜆0 /2 ⋅ [𝑃𝜆]−1 ⋅ 𝜋0! (𝜈mot
𝑆𝜆 )

= 𝕃(dim𝐺−dim𝐿𝜆)/2+(dim𝑉 𝜆+−dim𝑉 𝜆− )/2 ⋅ [𝑃𝜆]−1 ⋅ 𝜋0! ∘ (𝜋0)∗(𝜈mot
d𝒢rad(𝒳))

= 𝕃(dim𝐺−dim𝐿𝜆)/2+(dim𝑉 𝜆+−dim𝑉 𝜆− )/2 ⋅ [𝑃𝜆]−1 ⋅ [𝐿𝜆] ⋅ 𝜈mot
d𝒢rad(𝒳)

= 𝕃(dim𝑉 𝜆+−dim𝑉 𝜆− )/2 ⋅ 𝜈mot
d𝒢rad(𝒳) .

Here, the first step uses (5.2.6.2); the third uses (6.2.6.1); the fourth uses (6.2.5.1); the fifth uses

Lemma B.3.3, where the morphism 𝑓 there is taken to be an isomorphism; the seventh uses the

fact that the shifted Lagrangian correspondence (7.4.2.1) is oriented by Theorem 3.8.5, and the

fact that the orientation for d𝒢rad(dCrit(𝑓 ∶ 𝑈/𝐺 → 𝔸1)) induced by the canonical one𝐾𝑈/𝐺

is given by 𝐾𝑈 𝜆/𝐿𝜆 ; the ninth uses (5.2.3.1); the tenth is the key step, and uses (B.3.5.2); the

eleventh is analogous to the fifth; the twelfth uses (6.2.5.1) again; the thirteenth uses (6.2.6.1)

again; the fourteenth uses (5.2.6.2) again; and the final step uses the relation [𝑃𝜆] = [𝐿𝜆] ⋅
𝕃(dim𝐺−dim𝐿𝜆)/2.

Finally, we verify that vdim dℱilt𝜆(𝒳) = dim𝑉 𝜆+ − dim𝑉 𝜆− , where dℱilt𝜆(𝒳) ⊂ dℱilt(𝒳)
is the open and closed substack corresponding to the cocharacter 𝜆. Indeed, let 𝒳 ′ =
dCrit(𝑓 ∶ 𝑈/𝐺 → 𝔸1) be the derived critical locus, with the natural (−1)-shifted symplectic

structure, so 𝒳 ′
cl ≃ 𝒳cl. For 𝑥 ∈ 𝑆𝜆(𝐾), by Lemma B.3.4, one has

rank(𝕃dℱilt𝜆(𝒳)|𝑥) = rank[0,1](𝕃dℱilt𝜆(𝒳)|𝑥) − rank[0,1](𝕃dℱilt−𝜆(𝒳)|𝑥)

= rank[0,1](𝕃ℱilt𝜆(𝒳cl)|𝑥) − rank[0,1](𝕃ℱilt−𝜆(𝒳cl)|𝑥)

= rank(𝕃dℱilt𝜆(𝒳 ′)|𝑥) , (B.3.5.3)
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where rank[0,1] = dimH0 − dimH1. We have a presentation

𝕃𝒳 ′ |𝑥 ≃ (𝔤 ⟶ 𝕋𝑈 |𝑥 ⟶ 𝕃𝑈 |𝑥 ⟶ 𝔤∨) (B.3.5.4)

with degrees in [−2, 1], where 𝔤 is the Lie algebra of𝐺. By Halpern-Leistner [65, Lemma 1.2.3],

we have sf∗(𝕃dℱilt𝜆(𝒳)) ≃ tot∗(𝕃𝒳 )⩽0, where (−)⩽0 denotes the part of non-positive weights
with respect to the natural 𝔾m-action. This now gives

𝕃dℱilt𝜆(𝒳 ′)|𝑥 ≃ (𝔭𝜆 ⟶ 𝕋𝑈 𝜆,− |𝑥 ⟶ 𝕃𝑈 𝜆,+ |𝑥 ⟶ 𝔭∨−𝜆) , (B.3.5.5)

where 𝔭𝜆 is the Lie algebra of 𝑃𝜆, and −𝜆 is the opposite cocharacter of 𝜆. Note that dim𝑃𝜆 =
dim𝑃−𝜆 and that dim𝑈 𝜆,± = dim𝑉 𝜆± + dim𝑉 𝜆0 . It follows that vdim dℱilt(𝒳), which is equal

to the rank of (B.3.5.5) by (B.3.5.3), is dim𝑉 𝜆+ − dim𝑉 𝜆− .

B.4 The numeric identity

B.4.1. In this section, we deduce the numeric version of the integral identity, Theorem 7.4.5

from the motivic identity, Theorem 7.4.2.

In the following, let 𝒳 be a (−1)-shifted symplectic stack over 𝐾 as in Theorem 7.4.5.

B.4.2. Proof of Theorem 7.4.5. By a similar argument as in the proof of Lemma B.3.2, passing

to a representable étale cover of 𝒳 by fundamental stacks, which induces representable étale

covers of𝒢rad(𝒳) andℱilt(𝒳) as in §3.8.2, it is enough to prove the theoremwhen𝒳 ≃ 𝑆/𝐺
is fundamental, where 𝑆 is an affine 𝐾 -scheme acted on by a reductive group 𝐺. Here, we

are using étale descent for constructible functions, instead of Nisnevich descent for rings of

motives.

As in §B.3.5, shrinking 𝑆 if necessary, we may assume that there exists a smooth affine 𝐾 -

scheme 𝑈 acted on by 𝐺, and a 𝐺-invariant function 𝑓 ∶ 𝑈 → 𝔸1, such that 𝒳 is isomorphic

as a d-critical stack to the critical locus Crit(𝑓 )/𝐺. Now,𝒳 comes with a natural orientation,

and the motivic Behrend function 𝜈mot
𝒳 is defined.

Applying Theorem 7.4.2, then evaluating the Euler characteristics at 𝛾 , we obtain the iden-
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tity

∫
𝜑∈gr−1(𝛾)

𝜈𝒳 (ev(𝜑)) 𝑑𝜒 = (−1)vdim𝛾 dℱilt(𝒳) ⋅ 𝜈𝒢rad(𝒳)(𝛾) . (B.4.2.1)

Let 𝜑0 = sf(𝛾). Then the left-hand side of (B.4.2.1) is equal to 𝜈𝒳 (ev(𝜑0)) = 𝜈𝒳 (tot(𝛾)), since
the integrand is 𝔾m-invariant and 𝜑0 is in the closure of all 𝔾m-orbits. Also, by Lemma B.3.4,

we have

vdim𝛾 dℱilt(𝒳) = rank[0,1] 𝕃ℱilt(𝒳)|sf(𝛾) − rank[0,1] 𝕃ℱilt(𝒳)|sf( ̄𝛾 ) . (B.4.2.2)

This verifies (7.4.5.1).

For (7.4.5.2), apply Theorem 7.4.2 again, then take the difference of the evaluations at 𝛾
and ̄𝛾 . This gives the identity

(𝕃 − 1) ⋅ [ ∫
𝜑∈ℙ(gr−1(𝛾))

𝜈mot
𝒳 (ev(𝜑)) − ∫

𝜑∈ℙ(gr−1( ̄𝛾 ))
𝜈mot
𝒳 (ev(𝜑))]

+ 𝕃dimH1(𝕃𝒢rad(𝒳)|𝛾 ) ⋅ (𝕃−dimH1(𝕃ℱilt(𝒳cl)|sf(𝛾)) − 𝕃−dimH1(𝕃ℱilt(𝒳cl)|sf( ̄𝛾 ))) ⋅ 𝜈mot
𝒳 (tot(𝛾))

= (𝕃rank(𝕃dℱilt(𝒳)|sf(𝛾))/2 − 𝕃−rank(𝕃dℱilt(𝒳)|sf(𝛾))/2) ⋅ 𝜈mot
d𝒢rad(𝒳)(𝛾) (B.4.2.3)

of monodromic motives over 𝐾 . Here, we used the fact that the stabilizer group 𝐺𝛾 of 𝛾 in

gr−1(𝛾) is special and has motive 𝕃dim𝐺𝛾 , since 𝐺𝛾 is a subgroup of the fibre of the projection

𝑃𝜆 → 𝐿𝜆, and can be obtained by repeated extensions of 𝔾a. All of this can be seen by, for

example, equivariantly embedding 𝑆 into an affine space with a linear 𝐺-action.

Starting from (B.4.2.3), we divide both sides by 𝕃−1, and then take the Euler characteristic,
which sets𝕃1/2 to−1. We then apply the identity (7.4.5.1) to convert 𝜈𝒢rad(𝒳)(𝛾) to 𝜈𝒳 (tot(𝛾)).
This gives the desired identity (7.4.5.2).
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Appendix C

Proof of anti-symmetric wall-crossing

This appendix is dedicated to the proof of Theorem 7.2.3, through a complicated combinatorial

argument. The proof of the theorem is given in §C.3.7.

C.1 The setting

C.1.1. Throughout this section, let 𝐼 be a finite set, and let

𝐶𝐼 = {𝑒𝑖 , 𝑒∨𝑖 ∣ 𝑖 ∈ 𝐼} (C.1.1.1)

be a set of symbols. We define a map (−)∨ ∶ 𝐶𝐼 → 𝐶𝐼 by sending 𝑒𝑖 to 𝑒∨𝑖 and 𝑒∨𝑖 to 𝑒𝑖 for all
𝑖 ∈ 𝐼 .

Let𝐴𝐼 be the free associative algebra overℚ generated by elements of𝐶𝐼 , wherewe denote

the multiplication by ∗. There is an involution (−)∨ ∶ 𝐴𝐼 → 𝐴op
𝐼 , given by

(𝑥1 ∗⋯ ∗ 𝑥𝑘)∨ = 𝑥∨𝑘 ∗⋯ ∗ 𝑥∨1 (C.1.1.2)

for 𝑥1, … , 𝑥𝑘 ∈ 𝐶𝐼 .

Let 𝐿𝐼 be the free Lie algebra overℚ generated by elements of 𝐶𝐼 . Let 𝐿op
𝐼 be the opposite

Lie algebra of 𝐿𝐼 , i.e. the Lie algebra with the same underlying vector space and with Lie

bracket [𝑥, 𝑦]𝐿op
𝐼
= [𝑦, 𝑥]𝐿𝐼 . There is an involution (−)∨ ∶ 𝐿𝐼 → 𝐿op

𝐼 , defined inductively by

𝑥 ↦ 𝑥∨ for 𝑥 ∈ 𝐶𝐼 , (C.1.1.3)

[𝑥, 𝑦] ↦ [𝑦∨, 𝑥∨] for 𝑥, 𝑦 ∈ 𝐿𝐼 . (C.1.1.4)
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There is a natural inclusion of vector spaces 𝐿𝐼 ↪ 𝐴𝐼 , which identifies 𝐴𝐼 with the uni-

versal enveloping algebra of 𝐿𝐼 .

C.1.2. Define linear subspaces

𝐿+𝐼 = {𝑥 ∈ 𝐿𝐼 ∣ 𝑥 = −𝑥∨} , (C.1.2.1)

𝐿−𝐼 = {𝑥 ∈ 𝐿𝐼 ∣ 𝑥 = 𝑥∨} . (C.1.2.2)

Then 𝐿𝐼 = 𝐿+𝐼 ⊕𝐿−𝐼 , and this makes 𝐿𝐼 into a ℤ2-graded Lie algebra. In other words, we have

[𝐿+𝐼 , 𝐿±𝐼 ] ⊂ 𝐿±𝐼 and [𝐿−𝐼 , 𝐿±𝐼 ] ⊂ 𝐿∓𝐼 . In particular, 𝐿+𝐼 ⊂ 𝐿𝐼 is a Lie subalgebra, and there is a

natural embedding

𝑈(𝐿+𝐼 ) ↪ 𝐴𝐼 (C.1.2.3)

of associative algebras, where the left-hand side is the universal enveloping algebra of 𝐿+𝐼 .

This is important, as our main goal is to show that the wall-crossing formula in Theorem 7.2.3,

which was originally expressed in terms of the 𝐴𝐼 -module structure given by the operation

⋄, using the coefficients 𝑈 sd(…), can actually be expressed solely in terms of the 𝐿+𝐼 -module

structure given by the operation ♡, using the coefficients 𝑈̃ sd(…).
Define linear maps (−)+ ∶ 𝐿𝐼 → 𝐿+𝐼 , (−)− ∶ 𝐿𝐼 → 𝐿−𝐼 by

𝑥+ = 𝑥 − 𝑥∨, (C.1.2.4)

𝑥− = 𝑥 + 𝑥∨. (C.1.2.5)

We have the relations

(𝑥+)− = (𝑥−)+ = 0 , (C.1.2.6)

[𝑥, 𝑦]+ = 1
2([𝑥

+, 𝑦+] + [𝑥−, 𝑦−]) , (C.1.2.7)

[𝑥, 𝑦]− = 1
2([𝑥

+, 𝑦−] + [𝑥−, 𝑦+]) (C.1.2.8)

for 𝑥, 𝑦 ∈ 𝐿𝐼 .
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C.1.3. Write 𝑛 = |𝐼 |. Define a set

𝑃𝐼 = ∐
𝜎 ∶ {1,… , 𝑛} → 𝐼

bijective

{𝑥 = (𝑥1, … , 𝑥𝑛) | 𝑥𝑖 ∈ {𝑒𝜎(𝑖) , 𝑒∨𝜎(𝑖)} for all 𝑖} , (C.1.3.1)

as a subset of 𝐶𝑛𝐼 .

Let 𝐾𝐼 = ℤ𝐶𝐼 be the free abelian group generated by elements of 𝐶𝐼 , and let 𝐾+𝐼 = ℕ𝐶𝐼 ∖
{0} ⊂ 𝐾𝐼 .

C.1.4. Define a self-dual weak stability condition on 𝐼 to be a map 𝜏 ∶ 𝐾+𝐼 → 𝑇 , where 𝑇 is

a totally ordered set, equipped with a distinguished element 0 ∈ 𝑇 , and an order-reversing

involution 𝑡 ↦ −𝑡 fixing the element 0, such that

(i) For any 𝛼, 𝛽, 𝛾 ∈ 𝐾+𝐼 , such that 𝛽 = 𝛼 + 𝛾 , either

𝜏(𝛼) ⩽ 𝜏(𝛽) ⩽ 𝜏(𝛾) , or 𝜏(𝛼) ⩾ 𝜏(𝛽) ⩾ 𝜏(𝛾) .

(ii) For any 𝛼 ∈ 𝐾+𝐼 ,

𝜏(𝛼∨) = −𝜏(𝛼) .

C.2 Wall-crossing to trivial stability

C.2.1. The goal of this section is to prove Theorem C.2.2 below.

Let 𝜏 be a self-dual weak stability condition on 𝐼 , as in §C.1.4. Define elements

𝑇(𝐼 ; 𝜏) = ∑
𝜎∈𝔖𝑛

𝑈(𝑒𝜎(1), … , 𝑒𝜎(𝑛); 𝜏 , 0) ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) , (C.2.1.1)

̄𝑇 (𝐼 ; 𝜏) = ∑
𝑥∈𝑃𝐼

𝑈(𝑥1, … , 𝑥𝑛; 𝜏 , 0) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 , (C.2.1.2)

𝑇 sd(𝐼 ; 𝜏) = ∑
𝑥∈𝑃𝐼

𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏 , 0) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 (C.2.1.3)

in the algebra 𝐴𝐼 , where the coefficients 𝑈(…) and 𝑈 sd(…) are defined as in (7.1.3.7) and

(7.1.3.8).
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C.2.2. Theorem. We have

𝑇(𝐼 ; 𝜏) ∈ 𝐿𝐼 , (C.2.2.1)

̄𝑇 (𝐼 ; 𝜏) ∈ 𝐿−𝐼 , (C.2.2.2)

𝑇 sd(𝐼 ; 𝜏) ∈ 𝑈(𝐿+𝐼 ) . (C.2.2.3)

The proof will be given at the end of this section.

C.2.3. From now on, we take 𝐼 = {1,… , 𝑛}. For a subset 𝐽 = {𝑖1, … , 𝑖𝑘} ⊂ 𝐼 , where 𝑘 ⩾ 1
and 𝑖1 > ⋯ > 𝑖𝑘 , define elements 𝐹(𝐽), ̄𝐹(𝐽) ∈ 𝐿𝐼 and 𝐺(𝐽) ∈ 𝐿+𝐼 by

𝐹(𝐽) = (−1)𝑘−1
(𝑘 − 1)! 𝐵𝑘−1 ⋅ ∑

𝜎∈𝔖𝑘 ∶
𝜎(1)=1

[[… [𝑒𝑖1 , 𝑒𝑖𝜎(2)],… ], 𝑒𝑖𝜎(𝑘)] , (C.2.3.1)

̄𝐹 (𝐽 ) = (−1)𝑘−1
(𝑘 − 1)! 𝐵𝑘−1 ⋅ ∑

𝜎∈𝔖𝑘 ∶
𝜎(1)=1

[[… [𝑒𝑖1 , 𝑒−𝑖𝜎(2)],… ], 𝑒−𝑖𝜎(𝑘)] , (C.2.3.2)

𝐺(𝐽) = (−1)𝑘
𝑘! (𝐵𝑘 − 𝐵𝑘(12)) ⋅ ∑

𝜎∈𝔖𝑘 ∶
𝜎(1)=1

[[… [𝑒∓𝑖1 , 𝑒−𝑖𝜎(2)],… ], 𝑒−𝑖𝜎(𝑘)] , (C.2.3.3)

where 𝐵𝑘 denotes the 𝑘-th Bernoulli number, and 𝐵𝑘(−) denotes the 𝑘-th Bernoulli polyno-

mial. The sign ‘∓’ is ‘+’ if and only if 𝑘 is odd.

Note that 𝐹(𝐽) = ̄𝐹(𝐽) = 0 whenever 𝑘 > 2 is even, and 𝐺(𝐽) = 0 whenever 𝑘 > 1 is

odd.

For 𝑥1, … , 𝑥𝑘 ∈ 𝐴𝐼 , we denote

𝑠𝑘(𝑥1, … , 𝑥𝑘) = 1
𝑘! ∑

𝜎∈𝔖𝑘
𝑥𝜎(1) ∗⋯ ∗ 𝑥𝜎(𝑘) , (C.2.3.4)

̄𝑠𝑘(𝑥1, … , 𝑥𝑘) = 1
2𝑘 𝑘! 𝑠𝑘(𝑥

−1 , … , 𝑥−
𝑘 ) . (C.2.3.5)

C.2.4. Lemma. We have combinatorial identities

𝑒𝑛 ∗ 𝑠𝑛−1(𝑒1, … , 𝑒𝑛−1) = ∑
𝐽⊂𝐼 ∶
𝑛∈𝐽

𝑠𝑛−|𝐽 |+1(𝐹(𝐽), 𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽) , (C.2.4.1)
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𝑒𝑛 ∗ ̄𝑠𝑛−1(𝑒1, … , 𝑒𝑛−1) = (C.2.4.2)

∑
𝐽⊂𝐼 ∶
𝑛∈𝐽

̄𝑠𝑛−|𝐽 |+1( ̄𝐹(𝐽), 𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽) + ∑
𝐽⊂𝐼 ∶
𝑛∈𝐽

̄𝑠𝑛−|𝐽 |(𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽) ∗ 𝐺(𝐽) .

Proof. For (C.2.4.1), for 1 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑛, write

𝐸𝑖,𝑘 = 1
(𝑛 − 1)! ∑

𝜎∈𝔖𝑛 ∶
𝜎(𝑖)=𝑛

𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑘) . (C.2.4.3)

For 𝑘 = 1,… , 𝑛, using the invariance under the𝔖𝑛−1-action permuting the elements 𝑒1, … , 𝑒𝑛−1,
we find that

1
(𝑛 − 1
𝑘 − 1)

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

𝐹(𝐽) =
𝑘
∑
𝑖=1

(−1)𝑖−1(𝑘 − 1
𝑖 − 1 ) ⋅

(−1)𝑘−1
(𝑘 − 1)! 𝐵𝑘−1 ⋅ (𝑘 − 1)! 𝐸𝑖,𝑘 . (C.2.4.4)

Simplifying this, we obtain

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

𝐹(𝐽) =
𝑘
∑
𝑖=1

(−1)𝑘−𝑖 (𝑛 − 1)!
(𝑛 − 𝑘)! (𝑘 − 𝑖)! (𝑖 − 1)! 𝐵𝑘−1 ⋅ 𝐸𝑖,𝑘 . (C.2.4.5)

Therefore,

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

𝑠𝑛−𝑘+1(𝐹(𝐽), 𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽)

= 1
𝑛 − 𝑘 + 1 ⋅

𝑛−𝑘
∑
𝑗=0

𝑘
∑
𝑖=1

(−1)𝑘−𝑖 (𝑛 − 1)!
(𝑛 − 𝑘)! (𝑘 − 𝑖)! (𝑖 − 1)! 𝐵𝑘−1 ⋅ 𝐸𝑖+𝑗,𝑛

=
𝑛
∑
𝑖=1

𝑖
∑

𝑗=𝑖−𝑛+𝑘

(−1)𝑘−𝑗 (𝑛 − 1)!
(𝑛 − 𝑘 + 1)! (𝑘 − 𝑗)! (𝑗 − 1)! 𝐵𝑘−1 ⋅ 𝐸𝑖,𝑛 . (C.2.4.6)

The left-hand side of (C.2.4.1) is just 𝐸1,𝑛, so it suffices to prove that for any 𝑖 = 1,… , 𝑛,
𝑛
∑
𝑘=1

𝑖
∑

𝑗=𝑖−𝑛+𝑘

(−1)𝑘−𝑗 (𝑛 − 1)!
(𝑛 − 𝑘 + 1)! (𝑘 − 𝑗)! (𝑗 − 1)! 𝐵𝑘−1 = { 1, 𝑖 = 1 ,

0, 𝑖 > 1 .
(C.2.4.7)

Setting 𝑝 = 𝑗 − 1 and 𝑞 = 𝑘 − 𝑗, the above reduces to
𝑖−1
∑
𝑝=0

𝑛−𝑖
∑
𝑞=0

(−1)𝑞 (𝑛 − 1)!
(𝑛 − 𝑝 − 𝑞)! 𝑝! 𝑞! 𝐵𝑝+𝑞 = { 1, 𝑖 = 1 ,

0, 𝑖 > 1 .
(C.2.4.8)

This follows from taking 𝑥 = 0 in Lemma C.4.2 below.
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For (C.2.4.2), for 1 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑛, write

𝐸±
𝑖,𝑘 = 1

2𝑘−1 (𝑛 − 1)! ∑
𝜎∈𝔖𝑛 ∶
𝜎(𝑖)=𝑛

𝑒−𝜎(1) ∗⋯ ∗ 𝑒±𝜎(𝑖) ∗⋯ ∗ 𝑒−𝜎(𝑘) . (C.2.4.9)

Similarly to the previous case, we find that

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

̄𝐹 (𝐽 )− =
𝑘
∑
𝑖=1

(−1)𝑘−𝑖+1 2𝑘−2 (𝑛 − 1)!
(𝑛 − 𝑘)! (𝑘 − 𝑖)! (𝑖 − 1)! 𝐵𝑘−1 ⋅ 𝐸(−1)𝑘

𝑖,𝑘 , (C.2.4.10)

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

𝐺(𝐽) =
𝑘
∑
𝑖=1

(−1)𝑘−𝑖 2𝑘−1 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑘 − 𝑖)! (𝑖 − 1)! 𝐵

′
𝑘 ⋅ 𝐸(−1)𝑘−1

𝑖,𝑘 , (C.2.4.11)

where 𝐵′
𝑘 = 𝐵𝑘 − 𝐵𝑘(1/2). Proceeding as before, we have

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

̄𝑠𝑛−𝑘+1( ̄𝐹(𝐽), 𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽) (C.2.4.12)

=
𝑛
∑
𝑖=1

𝑖
∑

𝑗=𝑖−𝑛+𝑘

(−1)𝑘−𝑗 2𝑘−2 (𝑛 − 1)!
(𝑛 − 𝑘 + 1)! (𝑘 − 𝑗)! (𝑗 − 1)! 𝐵𝑘−1 ⋅ 𝐸(−1)𝑘

𝑖,𝑛 , (C.2.4.13)

∑
𝐽⊂𝐼 ∶

𝑛∈𝐽 , |𝐽 |=𝑘

̄𝑠𝑛−𝑘(𝑒𝑖 ∶ 𝑖 ∈ 𝐼 ∖ 𝐽) ∗ 𝐺(𝐽) (C.2.4.14)

=
𝑛
∑

𝑖=𝑛−𝑘+1

(−1)𝑛−𝑖+1 2𝑘−1 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! 𝐵

′
𝑘 ⋅ 𝐸(−1)𝑘−1

𝑖,𝑛 . (C.2.4.15)

The left-hand side of (C.2.4.2) is just (1/2) (𝐸+1,𝑛+𝐸−1,𝑛). Collecting the coefficients of each 𝐸±𝑖,𝑛,

we see that to prove (C.2.4.2), it is enough to prove that for any 𝑖 = 1,… , 𝑛 and 𝜀 = ±1,
𝑛
∑
𝑘=1

𝜀𝑘−1 ⋅
𝑖

∑
𝑗=𝑖−𝑛+𝑘

(−1)𝑘−𝑗 2𝑘−2 (𝑛 − 1)!
(𝑛 − 𝑘 + 1)! (𝑘 − 𝑗)! (𝑗 − 1)! 𝐵𝑘−1

+
𝑛
∑

𝑘=𝑛−𝑖+1
𝜀𝑘 ⋅ (−1)𝑛−𝑖+1 2𝑘−1 (𝑛 − 1)!

𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! 𝐵
′
𝑘 = { 1, 𝑖 = 1 and 𝜀 = 1 ,

0, 𝑖 > 1 or 𝜀 = −1 .
(C.2.4.16)

The case 𝜀 = 1 follows from taking 𝑥 = 0 in Lemma C.4.3 below. The case 𝜀 = −1 follows

from taking 𝑥 = 0 in Lemma C.4.4 below.

C.2.5. For 𝐽 ⊂ 𝐼 , we denote

𝐼 / 𝐽 = (𝐼 ∖ 𝐽) ⊔ {𝐽} .
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For any element 𝑥 ∈ 𝐴𝐽 , there is a homomorphism

𝐴𝐼/𝐽 ⟶ 𝐴𝐼 ,
𝑦 ⟼ 𝑦 |𝑒𝐽↦𝑥 ,

defined by mapping 𝑒𝑖 to 𝑒𝑖, and 𝑒∨𝑖 to 𝑒∨𝑖 , for 𝑖 ∈ 𝐼 ∖ 𝐽 , and mapping 𝑒𝐽 to the image of 𝑥 in

𝐴𝐼 , and 𝑒∨𝐽 to the image of 𝑥∨ in 𝐴𝐼 .

If, moreover, 𝑥 ∈ 𝐿𝐽 , then this map sends the subspace 𝐿𝐼/𝐽 to 𝐿𝐼 , preserving the ℤ2-

grading. In particular, this map sends the subalgebra 𝑈(𝐿+𝐼/𝐽 ) into 𝑈(𝐿+𝐼 ).
If 𝜏 is a self-dual weak stability condition on 𝐼 such that the restriction of 𝜏 to 𝐾+(𝐽) is a

constant map, then 𝜏 induces a self-dual weak stability condition on 𝐼 / 𝐽 .
To avoid nested subscripts, for 𝐼 , 𝐽 , 𝜏 , 𝑥 as above, we denote

𝑇(𝐼 , 𝐽 ; 𝜏 ; 𝑥) = 𝑇(𝐼 / 𝐽 ; 𝜏) |𝑒𝐽↦𝑥 , (C.2.5.1)

𝑇 sd(𝐼 , 𝐽 ; 𝜏 ; 𝑥) = 𝑇 sd(𝐼 / 𝐽 ; 𝜏) |𝑒𝐽↦𝑥 . (C.2.5.2)

We also define auxiliary coefficients

𝑈 ′(𝛼1, … , 𝛼𝑛; 𝜏 , 𝜏̃ ) = ∑
0 = 𝑎0 < ⋯ < 𝑎𝑚 = 𝑛.
Define 𝛽1, … , 𝛽𝑚 by 𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 .
We require 𝜏(𝛽𝑖) = 𝜏(𝛼𝑗) for all 𝑎𝑖−1 < 𝑗 ⩽ 𝑎𝑖

𝑆(𝛽1, … , 𝛽𝑚; 𝜏 , 𝜏̃ ) ⋅ (
𝑚
∏
𝑖=1

1
(𝑎𝑖 − 𝑎𝑖−1)!

) ,

(C.2.5.3)
𝑈 ′sd(𝛼1, … , 𝛼𝑛; 𝜏 , 𝜏̃ ) =

∑
0 = 𝑎0 < ⋯ < 𝑎𝑚 ⩽ 𝑛.
Define 𝛽1, … , 𝛽𝑚 by 𝛽𝑖 = 𝛼𝑎𝑖−1+1 +⋯+ 𝛼𝑎𝑖 .
We require 𝜏(𝛽𝑖) = 𝜏(𝛼𝑗) for all 𝑎𝑖−1 < 𝑗 ⩽ 𝑎𝑖 ,
and 𝜏(𝛼𝑗) = 0 for all 𝑗 > 𝑎𝑚

𝑆sd(𝛽1, … , 𝛽𝑚; 𝜏 , 𝜏̃ ) ⋅ (
𝑚
∏
𝑖=1

1
(𝑎𝑖 − 𝑎𝑖−1)!

) ⋅ 1
2𝑛−𝑎𝑚 (𝑛 − 𝑎𝑚)!

.

(C.2.5.4)

In other words, in (C.2.5.3), we take the sum of all terms in (7.1.3.7) with 𝑙 = 1; in (C.2.5.4), we

take the sum of all terms in (7.1.3.8) with 𝑙 = 0.
Define

𝑇 ′(𝐼 ; 𝜏) = ∑
𝜎∈𝔖𝑛

𝑈 ′(𝑒𝜎(1), … , 𝑒𝜎(𝑛); 𝜏 , 0) ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) , (C.2.5.5)

̄𝑇 ′(𝐼 ; 𝜏) = ∑
𝑥∈𝑃𝐼

𝑈 ′(𝑥1, … , 𝑥𝑛; 𝜏 , 0) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 , (C.2.5.6)
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𝑇 ′sd(𝐼 ; 𝜏) = ∑
𝑥∈𝑃𝐼

𝑈 ′sd(𝑥1, … , 𝑥𝑛; 𝜏 , 0) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 , (C.2.5.7)

as elements of 𝐴𝐼 . By definition, we have the relations

𝑇(𝐼 ; 𝜏) = ∑
𝐼 = 𝐼1 ⊔⋯ ⊔ 𝐼𝑙 ∶
𝐼𝑖 ≠ ∅ for any 𝑖

(−1)𝑙−1
𝑙 ⋅ 𝑇 ′(𝐼1; 𝜏) ∗ ⋯ ∗ 𝑇 ′(𝐼𝑙 ; 𝜏) , (C.2.5.8)

̄𝑇 (𝐼 ; 𝜏) = ∑
𝐼 = 𝐼1 ⊔⋯ ⊔ 𝐼𝑙 ∶
𝐼𝑖 ≠ ∅ for any 𝑖

(−1)𝑙−1
𝑙 ⋅ ̄𝑇 ′(𝐼1; 𝜏) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑙 ; 𝜏) , (C.2.5.9)

𝑇 sd(𝐼 ; 𝜏) = ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑙 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑙

(−1/2𝑙 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑙 ; 𝜏) ∗ 𝑇 ′sd(𝐼0; 𝜏) . (C.2.5.10)

For 𝐽 ⊂ 𝐼 as above, a self-dual weak stability condition 𝜏 on 𝐼 that is constant on 𝐽 , and an

element 𝑥 ∈ 𝐴𝐼 , we denote

𝑇 ′(𝐼 , 𝐽 ; 𝜏 ; 𝑥) = 𝑇 ′(𝐼 / 𝐽 ; 𝜏) |𝑒𝐽↦𝑥 , (C.2.5.11)

̄𝑇 ′(𝐼 , 𝐽 ; 𝜏 ; 𝑥) = ̄𝑇 ′(𝐼 / 𝐽 ; 𝜏) |𝑒𝐽↦𝑥 , (C.2.5.12)

𝑇 ′sd(𝐼 , 𝐽 ; 𝜏 ; 𝑥) = 𝑇 ′sd(𝐼 / 𝐽 ; 𝜏) |𝑒𝐽↦𝑥 , (C.2.5.13)

as is similar to the above.

C.2.6. Lemma. Let 0 ⩽ 𝑙 < 𝑚 ⩽ 𝑛 with 𝑚 ⩾ 𝑙 + 2. Let 𝜏1, 𝜏2 be two self-dual weak stability

conditions on 𝐼 , satisfying

𝜏1(𝑒1) ⩽ ⋯ ⩽ 𝜏1(𝑒𝑙) < 𝜏1(𝑒𝑙+1) = ⋯ = 𝜏1(𝑒𝑚−1) < 𝜏1(𝑒𝑚) < 𝜏1(𝑒𝑚+1) ⩽ ⋯ ⩽ 𝜏1(𝑒𝑛) ,
𝜏2(𝑒1) ⩽ ⋯ ⩽ 𝜏2(𝑒𝑙) < 𝜏2(𝑒𝑙+1) = ⋯ = 𝜏2(𝑒𝑚−1) = 𝜏2(𝑒𝑚) < 𝜏2(𝑒𝑚+1) ⩽ ⋯ ⩽ 𝜏2(𝑒𝑛) ,

where each ‘⩽’ sign is ‘=’ for 𝜏1 if and only if the corresponding ‘⩽’ sign is ‘=’ for 𝜏2. Then

𝑇 ′(𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

𝑇 ′(𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.6.1)

𝑇(𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

𝑇(𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.6.2)

where 𝐹(𝐽) is given by (C.2.3.1).

Proof. First, let us prove (C.2.6.1). By the definitions, both sides of (C.2.6.1) lie in the subspace
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of 𝐴𝐼 spanned by the elements 𝑒𝜎(1) ∗ ⋯ ∗ 𝑒𝜎(𝑛), where 𝜎 ∈ 𝔖𝑛, such that 𝜏2(𝑒𝜎(1)) ⩾ ⋯ ⩾
𝜏2(𝑒𝜎(𝑛)). Therefore, it suffices to prove that for each of these monomials, its coefficients on

both sides are equal.

Let 𝐼0 = {𝑙 + 1,… ,𝑚}. Then (C.2.6.1) can be rewritten as

𝑇 ′(𝐼 , 𝐼0; 𝜏2; 𝑇 ′(𝐼0; 𝜏1)) = ∑
𝐽⊂𝐼0∶𝑚∈𝐽

𝑇 ′(𝐼 , 𝐼0; 𝜏2; 𝑇 ′(𝐼0, 𝐽 ; 𝜏2; 𝐹(𝐽))) , (C.2.6.3)

by an elementary combinatorial argument. Therefore, it is enough to show that

𝑇 ′(𝐼0; 𝜏1) = ∑
𝐽⊂𝐼0∶𝑚∈𝐽

𝑇 ′(𝐼0, 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.6.4)

which is precisely (C.2.6.1) with 𝐼 = 𝐼0. Thus, we may ease the notation by setting 𝑙 = 0,
𝑚 = 𝑛, and 𝐼0 = 𝐼 . Expanding both sides of (C.2.6.4), we see that it is equivalent to

∑
𝜎∈𝔖𝑛 ∶
𝜎(1)=𝑛

1
(𝑛 − 1)! ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) =

∑
𝐽⊂𝐼0∶𝑛∈𝐽

∑
𝜎 ∶ {1,…,𝑛−|𝐽 |+1}→𝐼/𝐽

bijective

1
(𝑛 − |𝐽 | + 1)! ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛−|𝐽 |+1) |𝑒𝐽↦𝐹(𝐽)

, (C.2.6.5)

which is precisely (C.2.4.1). Therefore, we have proved (C.2.6.1).

For (C.2.6.2), using (C.2.5.8), we see that the right-hand side of (C.2.6.2) equals

∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∶

𝑚 ∈ 𝐽

∑
𝐼 = 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for any 𝑖,
𝐽 ⊂ 𝐼𝑗 for some 𝑗

(−1)𝑘−1
𝑘 ⋅ 𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ 𝑇 ′(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽)) ∗

⋯ ∗ 𝑇 ′(𝐼𝑘 ; 𝜏2)

= ∑
𝐼 = 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for any 𝑖.

Let 𝑗 satisfy 𝑚 ∈ 𝐼𝑗

∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∶

𝑚 ∈ 𝐽

(−1)𝑘−1
𝑘 ⋅ 𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ 𝑇 ′(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽)) ∗

⋯ ∗ 𝑇 ′(𝐼𝑘 ; 𝜏2)

= ∑
𝐼 = 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for any 𝑖.

Let 𝑗 satisfy 𝑚 ∈ 𝐼𝑗

𝑇 ′(𝐼1; 𝜏1) ∗ ⋯ ∗ 𝑇 ′(𝐼𝑘 ; 𝜏1) = 𝑇(𝐼 ; 𝜏1) , (C.2.6.6)

where the second equal sign uses that 𝑇 ′(𝐼𝑖; 𝜏1) = 𝑇 ′(𝐼𝑖; 𝜏2) if 𝑖 ≠ 𝑗, by the definitions.
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C.2.7. Lemma. Let 0 ⩽ 𝑙 < 𝑚 ⩽ 𝑛 and 𝜏1, 𝜏2 satisfy the assumptions of Lemma C.2.6. Then

̄𝑇 ′(𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

̄𝑇 ′(𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.7.1)

̄𝑇 (𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

̄𝑇 (𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.7.2)

where 𝐹(𝐽) is given by (C.2.3.1).

Proof. We observe that for any 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝑃𝐼 , we have

𝑈 ′(𝑥1, … , 𝑥𝑛; 𝜏 , 0) = 𝑈 ′(𝑥∨𝑛 , … , 𝑥∨1 ; 𝜏 , 0) , (C.2.7.3)

𝑈(𝑥1, … , 𝑥𝑛; 𝜏 , 0) = 𝑈(𝑥∨𝑛 , … , 𝑥∨1 ; 𝜏 , 0) , (C.2.7.4)

which follow from the definition of these coefficients. Therefore, if we write

𝑇 ′(𝑥; 𝜏) = ∑
𝜎∈𝔖𝑛

𝑈 ′(𝑥𝜎(1), … , 𝑥𝜎(𝑛); 𝜏 , 0) ⋅ 𝑥𝜎(1) ∗⋯ ∗ 𝑥𝜎(𝑛) , (C.2.7.5)

𝑇(𝑥; 𝜏) = ∑
𝜎∈𝔖𝑛

𝑈(𝑥𝜎(1), … , 𝑥𝜎(𝑛); 𝜏 , 0) ⋅ 𝑥𝜎(1) ∗⋯ ∗ 𝑥𝜎(𝑛) , (C.2.7.6)

and write 𝑥∨ = (𝑥∨𝑛 , … , 𝑥∨1 ), then

𝑇 ′(𝑥∨; 𝜏) = 𝑇 ′(𝑥, 𝜏)∨ , (C.2.7.7)

𝑇(𝑥∨; 𝜏) = 𝑇(𝑥, 𝜏)∨ . (C.2.7.8)

To prove (C.2.7.1), note that both sides are self-dual by the above observation, so it is

enough to prove that the coefficients of monomials 𝑥1 ∗ ⋯ ∗ 𝑥𝑛 that involve 𝑒𝑚 (rather than

𝑒∨𝑚) are equal on both sides. We divide such monomials into 2𝑛−1 classes, according to whether
they involve 𝑒𝑖 or 𝑒∨𝑖 for 𝑖 ∈ {1,… , 𝑛} ∖ {𝑚}. For each of these classes, let 𝐼 ′ ⊂ 𝐼 be the

set of 𝑖 ∈ 𝐼 such that 𝑒∨𝑖 is involved in that class. Let 𝜉 ∶ 𝐾𝐼 → 𝐾𝐼 be the automorphism

exchanging 𝑒𝑖 and 𝑒∨𝑖 for all 𝑖 ∈ 𝐼 ′. Applying Lemma C.2.6 to the weak stability condition

𝛼 ↦ 𝜏(𝜉(𝛼)), we see that the coefficients of these monomials on both sides of (C.2.7.1) are

equal to the coefficients of the corresponding monomials in (C.2.6.1) using the modified weak

stability condition. This proves (C.2.7.1).

Finally, (C.2.7.2) follows from an analogous argument using (C.2.6.2).
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C.2.8. Lemma. Let 0 ⩽ 𝑙 < 𝑚 ⩽ 𝑛 with 𝑚 ⩾ 𝑙 + 2. Let 𝜏1, 𝜏2 be two self-dual weak stability

conditions on 𝐼 , satisfying

0 ⩽ 𝜏1(𝑒1) ⩽ ⋯ ⩽ 𝜏1(𝑒𝑙) < 𝜏1(𝑒𝑙+1) = ⋯ = 𝜏1(𝑒𝑚−1) < 𝜏1(𝑒𝑚) < 𝜏1(𝑒𝑚+1) ⩽ ⋯ ⩽ 𝜏1(𝑒𝑛) ,
0 ⩽ 𝜏2(𝑒1) ⩽ ⋯ ⩽ 𝜏2(𝑒𝑙) < 𝜏2(𝑒𝑙+1) = ⋯ = 𝜏2(𝑒𝑚−1) = 𝜏2(𝑒𝑚) < 𝜏2(𝑒𝑚+1) ⩽ ⋯ ⩽ 𝜏2(𝑒𝑛) ,

where each ‘⩽’ sign is ‘=’ for 𝜏1 if and only if the corresponding ‘⩽’ sign is ‘=’ for 𝜏2. Then

𝑇 ′sd(𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

𝑇 ′sd(𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.8.1)

𝑇 sd(𝐼 ; 𝜏1) = ∑
𝐽⊂{𝑙+1, …, 𝑚}∶

𝑚∈𝐽

𝑇 sd(𝐼 , 𝐽 ; 𝜏2; 𝐹(𝐽)) , (C.2.8.2)

where 𝐹(𝐽) is given by (C.2.3.1).

Proof. The proof is similar to that of Lemma C.2.6.

First, let us prove (C.2.8.1). By the definitions, both sides of (C.2.6.1) lie in the subspace

of 𝐴𝐼 spanned by the elements 𝑒𝜎(1) ∗ ⋯ ∗ 𝑒𝜎(𝑛), where 𝜎 ∈ 𝔖𝑛, such that 𝜏2(𝑒𝜎(1)) ⩾ ⋯ ⩾
𝜏2(𝑒𝜎(𝑛)). Note that the 𝑒∨𝑖 cannot appear. Therefore, it suffices to prove that for each of these

monomials, its coefficients on both sides are equal.

Let 𝐼0 = {𝑙 + 1,… ,𝑚}. We rewrite (C.2.8.1) as

𝑇 ′sd(𝐼 , 𝐼0; 𝜏2; 𝑇 ′(𝐼0; 𝜏1)) = ∑
𝐽⊂𝐼0∶𝑚∈𝐽

𝑇 ′sd(𝐼 , 𝐼0; 𝜏2; 𝑇 ′(𝐼0, 𝐽 ; 𝜏2; 𝐹(𝐽))) , (C.2.8.3)

which follows from (C.2.6.4). This proves (C.2.8.1).

For (C.2.8.2), using (C.2.5.10), we see that the right-hand side of (C.2.8.2) equals

∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∶

𝑚 ∈ 𝐽

∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,
𝐽 ⊂ 𝐼𝑗 for some 𝑗 > 0

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽)) ∗

⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗ 𝑇 ′sd(𝐼0; 𝜏2)

+ ∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∶

𝑚 ∈ 𝐽

∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,

𝐽 ⊂ 𝐼0

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗

𝑇 ′sd(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽))
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= ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,
𝑚 ∈ 𝐼𝑗 for some 𝑗 > 0

∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∩ 𝐼𝑗 ∶

𝑚 ∈ 𝐽

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽)) ∗

⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗ 𝑇 ′sd(𝐼0; 𝜏2)

+ ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,

𝑚 ∈ 𝐼0

∑
𝐽 ⊂ {𝑙 + 1,… ,𝑚} ∩ 𝐼0 ∶

𝑚 ∈ 𝐽

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗

𝑇 ′sd(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽))

= ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏1) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏1) ∗ 𝑇 ′sd(𝐼0; 𝜏1)

= 𝑇 sd(𝐼 ; 𝜏1) , (C.2.8.4)

where the second equal sign is by (C.2.7.1) and (C.2.8.1). This proves (C.2.8.2).

C.2.9. Lemma. Let 1 ⩽ 𝑚 ⩽ 𝑛. Let 𝜏1, 𝜏2 be two self-dual weak stability conditions on 𝐼 , satisfy-
ing

0 = 𝜏1(𝑒1) = ⋯ = 𝜏1(𝑒𝑚−1) < 𝜏1(𝑒𝑚) < 𝜏1(𝑒𝑚+1) < ⋯ < 𝜏1(𝑒𝑛) ,
0 = 𝜏2(𝑒1) = ⋯ = 𝜏2(𝑒𝑚−1) = 𝜏2(𝑒𝑚) < 𝜏2(𝑒𝑚+1) < ⋯ < 𝜏2(𝑒𝑛) .

Then

𝑇 ′sd(𝐼 ; 𝜏1) = ∑
𝐽⊂{1, …, 𝑚}∶

𝑚∈𝐽

𝑇 ′sd(𝐼 , 𝐽 ; 𝜏2; ̄𝐹 (𝐽)) + ∑
𝐽⊂{1, …, 𝑚}∶

𝑚∈𝐽

𝑇 ′sd(𝐼 ∖ 𝐽 ; 𝜏2) ∗ 𝐺(𝐽) , (C.2.9.1)

𝑇 sd(𝐼 ; 𝜏1) = ∑
𝐽⊂{1, …, 𝑚}∶

𝑚∈𝐽

𝑇 sd(𝐼 , 𝐽 ; 𝜏2; ̄𝐹 (𝐽)) + ∑
𝐽⊂{1, …, 𝑚}∶

𝑚∈𝐽

𝑇 sd(𝐼 ∖ 𝐽 ; 𝜏2) ∗ 𝐺(𝐽) , (C.2.9.2)

where ̄𝐹 (𝐽 ) and 𝐺(𝐽) are given by (C.2.3.2) and (C.2.3.3).

Proof. The proof is similar to that of Lemma C.2.6.

First, let us prove (C.2.9.1). By the definitions, both sides of (C.2.6.1) lie in the subspace

of 𝐴𝐼 spanned by the elements 𝑒𝜎(1) ∗ ⋯ ∗ 𝑒𝜎(𝑛), where 𝜎 ∈ 𝔖𝑛, such that 𝜏2(𝑒𝜎(1)) ⩾ ⋯ ⩾
𝜏2(𝑒𝜎(𝑛)). Therefore, it suffices to prove that for each of these monomials, its coefficients on

both sides are equal.

Let 𝐼0 = {1,… ,𝑚}. We rewrite (C.2.9.1) as
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𝑇 ′sd(𝐼 , 𝐼0; 𝜏2; 𝑇 ′sd(𝐼0; 𝜏1)) = ∑
𝐽⊂𝐼0∶𝑚∈𝐽

(𝑇 ′sd(𝐼 , 𝐼0; 𝜏2; 𝑇 ′sd(𝐼0, 𝐽 ; 𝜏2; ̄𝐹 (𝐽)))
+ 𝑇 ′sd(𝐼 , 𝐼0; 𝜏2; 𝑇 ′sd(𝐼0 ∖ 𝐽 ; 𝜏2)) ∗ 𝐺(𝐽)) . (C.2.9.3)

Therefore, as before, it suffices to prove (C.2.9.1) in the case when 𝑚 = 𝑛. But this is pre-

cisely (C.2.4.2). This proves (C.2.9.1).

For (C.2.9.2), using (C.2.5.10), as is similar to the proof of Lemma C.2.8, we see that the

right-hand side of (C.2.9.2) equals

∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,
𝑚 ∈ 𝐼𝑗 for some 𝑗 > 0

∑
𝐽 ⊂ {1,… ,𝑚} ∩ 𝐼𝑗 ∶

𝑚 ∈ 𝐽

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑗 , 𝐽 ; 𝜏2; 𝐹(𝐽)) ∗

⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗ 𝑇 ′sd(𝐼0; 𝜏2)

+ ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘,

𝑚 ∈ 𝐼0

∑
𝐽 ⊂ {1,… ,𝑚} ∩ 𝐼0 ∶

𝑚 ∈ 𝐽

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏2) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏2) ∗

(𝑇 ′sd(𝐼0 , 𝐽 ; 𝜏2; ̄𝐹 (𝐽)) + 𝑇 ′sd(𝐼0 ∖ 𝐽 ; 𝜏2) ∗ 𝐺(𝐽))

= ∑
𝐼 = 𝐼0 ⊔ 𝐼1 ⊔⋯ ⊔ 𝐼𝑘 ∶
𝐼𝑖 ≠ ∅ for 𝑖 = 1,… , 𝑘

(−1/2𝑘 ) ⋅ ̄𝑇 ′(𝐼1; 𝜏1) ∗ ⋯ ∗ ̄𝑇 ′(𝐼𝑘 ; 𝜏1) ∗ 𝑇 ′sd(𝐼0; 𝜏1)

= 𝑇 sd(𝐼 ; 𝜏1) , (C.2.9.4)

where the first equal sign is by (C.2.7.1) and (C.2.9.1). This proves (C.2.9.2).

Now, we are ready to prove Theorem C.2.2.

C.2.10. Proof of Theorem C.2.2. We only write down a proof of the more difficult part

(C.2.2.3), as the proof of (C.2.2.1) is analogous and easier, and (C.2.2.2) follows from (C.2.2.1)

together with the fact that 𝑈(𝑥1, … , 𝑥𝑚; 𝜏 , 0) = 𝑈(𝑥∨𝑚, … , 𝑥∨1 ; 𝜏 , 0) for all 𝑥 ∈ 𝑃𝐼 .

Let 𝑆 be the set of self-dual weak stability conditions on 𝐼 . For 𝜏 ∈ 𝑆, let 𝑇𝜏 be its codomain,

which is a totally ordered set. For 𝑡, 𝑡′ ∈ 𝑇𝜏 , write

sgn(𝑡, 𝑡′) =
⎧⎪
⎨⎪⎩

1, 𝑡 > 𝑡′ ,
0, 𝑡 = 𝑡′ ,
−1, 𝑡 < 𝑡′ ,

and write sgn(𝑡) = sgn(𝑡, 0).
Define an equivalence relation ∼ on 𝑆 to be generated by the following relations:

165



(i) 𝜏1 ∼ 𝜏2 if for any 𝑖, 𝑗 ∈ {1,… , 𝑛}, sgn 𝜏1(𝑒𝑖) = sgn 𝜏2(𝑒𝑖), sgn(𝜏1(𝑒𝑖), 𝜏1(𝑒𝑗)) =
sgn(𝜏2(𝑒𝑖), 𝜏2(𝑒𝑗)), and sgn(𝜏1(𝑒𝑖), 𝜏1(𝑒∨𝑗 )) = sgn(𝜏2(𝑒𝑖), 𝜏2(𝑒∨𝑗 )).

(ii) 𝜏1 ∼ 𝜏2 if there exists 𝜎 ∈ 𝔖𝑛 with 𝜏1(𝑒𝑖) = ±𝜏2(𝑒𝜎(𝑖)) for all 𝑖, where the ‘±’ signs are
arbitrary.

(iii) 𝜏1 ∼ 𝜏2 if they satisfy the assumption of Lemma C.2.8.

(iv) 𝜏1 ∼ 𝜏2 if they satisfy the assumption of Lemma C.2.9.

We claim that ∼ is trivial, that is, all elements of 𝑆 are equivalent under ∼.
Indeed, every element 𝜏 ∈ 𝑆 is equivalent to the trivial stability condition 0 ∈ 𝑆. To see

this, using (ii), we may assume that

0 ⩽ 𝜏(𝑒1) ⩽ ⋯ ⩽ 𝜏(𝑒𝑛) .

If all the inequality signs are equalities, then 𝜏 = 0 and we are done. If not, suppose that

0 = 𝜏(𝑒1) = ⋯ = 𝜏(𝑒𝑙) < 𝜏(𝑒𝑙+1) = ⋯ = 𝜏(𝑒𝑚) < 𝜏(𝑒𝑚+1) ⩽ ⋯ ⩽ 𝜏(𝑒𝑛) ,

where 0 ⩽ 𝑙 < 𝑚 ⩽ 𝑛. Using (iii), we may increase the values of 𝜏(𝑒𝑚) by a small amount, as

long as it stays below 𝜏(𝑒𝑚+1). We then do the same thing to 𝑒𝑚−1 , … , 𝑒𝑙+2, so that we can

now assume that

0 = 𝜏(𝑒1) = ⋯ = 𝜏(𝑒𝑙) < 𝜏(𝑒𝑙+1) < 𝜏(𝑒𝑙+2) ⩽ ⋯ ⩽ 𝜏(𝑒𝑛) ,

where 0 ⩽ 𝑙 < 𝑛. We can then use (iv) to modify 𝜏(𝑒𝑙+1), so that now we have 𝜏(𝑒𝑙+1) = 0.
Repeating this process, we see that we eventually reach a point where 𝜏 = 0.

Therefore, what is left to prove is that if 𝜏1 ∼ 𝜏2, and 𝜏1 satisfies (C.2.2.3), then so does 𝜏2.
To see this, we only need to check the cases (i)–(iv) individually. By induction on 𝑛, we can
assume that this is already true for all smaller values of 𝑛, as the case when 𝑛 = 0 is trivial.

For (i), we see that 𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏1, 0) = 𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏2, 0) for all (𝑥1, … , 𝑥𝑛) ∈ 𝑃𝐼 , so

that 𝑇 sd(𝐼 ; 𝜏1) = 𝑇 sd(𝐼 ; 𝜏2). For (ii), permutations does not affect 𝑇 sd(𝐼 ; 𝜏) either, due to the

permutation symmetry of 𝑃𝐼 . Switching the sign of 𝜏(𝑒𝑖) amounts to exchanging the roles

of 𝑒𝑖 and 𝑒∨𝑖 , i.e., its effect on 𝑇 sd(𝐼 ; 𝜏) is swapping 𝑒𝑖 with 𝑒∨𝑖 in the expression. However,

since the subspace 𝐿+𝐼 ⊂ 𝐿𝐼 is fixed under this operation, (C.2.2.3) is preserved. For (iii), we

use (C.2.8.2), whose right-hand side contains 𝑇 sd(𝐼 ; 𝜏2) as the term with 𝐽 = {𝑚}. All other
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terms involve index sets of size < 𝑛, and hence, after replacing 𝑒𝐽 ↦ 𝐹(𝐽), lie in 𝑈(𝐿+𝐼 ), by
our induction hypothesis. For (iv), similarly, we see from (C.2.9.2) that the difference between

𝑇 sd(𝐼 ; 𝜏1) and 𝑇 sd(𝐼 ; 𝜏2) lies in 𝑈(𝐿+𝐼 ).

C.3 General wall-crossing

C.3.1. Let notation be as in the previous subsection. For 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝑃𝐼 , define

𝑄(𝑥) = { 𝑦 = (𝑦1, … , 𝑦𝑚) | 𝑚 ⩾ 1, 0 = 𝑎0 < ⋯ < 𝑎𝑚 = 𝑛,
𝑦𝑖 = 𝑥𝑎𝑖−1+1 +⋯+ 𝑥𝑎𝑖 for all 𝑖

} , (C.3.1.1)

𝑄′(𝑥) = { 𝑦 = (𝑦1, … , 𝑦𝑚) | 𝑚 ⩾ 0, 0 = 𝑎0 < ⋯ < 𝑎𝑚 ⩽ 𝑛,
𝑦𝑖 = 𝑥𝑎𝑖−1+1 +⋯+ 𝑥𝑎𝑖 for all 𝑖

} , (C.3.1.2)

where each element 𝑦𝑖 is regarded as an element of 𝐾𝐼 ≃ ⨁𝑖 (ℤ𝑒𝑖 ⊕ℤ𝑒∨𝑖 ).

C.3.2. Lemma. For self-dual weak stability conditions 𝜏 , 𝜏̂ , 𝜏̃ on 𝐼 , we have combinatorial iden-

tities

𝑆(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏) = { 1, 𝑛 = 1 ,
0, 𝑛 > 1 ,

(C.3.2.1)

𝑆(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏̃ ) = ∑
𝑦∈𝑄(𝑥)

𝑆(𝑦1, … , 𝑦𝑚; 𝜏̂ , 𝜏̃ ) ⋅
𝑚
∏
𝑖=1

𝑆(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 𝜏̂ ) , (C.3.2.2)

𝑆sd(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏) = { 1, 𝑛 = 0 ,
0, 𝑛 > 0 ,

(C.3.2.3)

𝑆sd(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏̃ ) = ∑
𝑦∈𝑄′(𝑥)

𝑆sd(𝑦1, … , 𝑦𝑚; 𝜏̂ , 𝜏̃ ) ⋅

(
𝑚
∏
𝑖=1

𝑆(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 𝜏̂ )) ⋅ 𝑆sd(𝑥𝑎𝑚+1 , … , 𝑥𝑛; 𝜏 , 𝜏̂ ) , (C.3.2.4)

𝑈(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏) = { 1, 𝑛 = 1 ,
0, 𝑛 > 1 ,

(C.3.2.5)

𝑈(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏̃ ) = ∑
𝑦∈𝑄(𝑥)

𝑈(𝑦1, … , 𝑦𝑚; 𝜏̂ , 𝜏̃ ) ⋅
𝑚
∏
𝑖=1

𝑈(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 𝜏̂ ) , (C.3.2.6)

𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏) = { 1, 𝑛 = 0 ,
0, 𝑛 > 0 ,

(C.3.2.7)
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𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏̃ ) = ∑
𝑦∈𝑄′(𝑥)

𝑈 sd(𝑦1, … , 𝑦𝑚; 𝜏̂ , 𝜏̃ ) ⋅

(
𝑚
∏
𝑖=1

𝑈(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 𝜏̂ )) ⋅ 𝑈 sd(𝑥𝑎𝑚+1 , … , 𝑥𝑛; 𝜏 , 𝜏̂ ) , (C.3.2.8)

where 𝑎𝑖 is as in (C.3.1.1) and (C.3.1.2).

Proof. The identities (C.3.2.1), (C.3.2.2), (C.3.2.5), and (C.3.2.6) were proved in [83, Theorems

4.5 and 4.8], using purely combinatorial methods. The identities (C.3.2.3) and (C.3.2.7) follow

from the definitions easily.

One could also prove the other two identities, (C.3.2.4) and (C.3.2.8), using combinatorics.

However, we take a more intuitive approach and deduce them from Theorem 7.1.3.

Consider a self-dual quiver 𝑄 defined as follows. The set of vertices of 𝑄 is 𝑄0 = 𝐼 ⊔ 𝐼∨ =
{1, 1∨, … , 𝑛, 𝑛∨}. There is a unique arrow 𝑖 → 𝑗 for any 𝑖, 𝑗 ∈ 𝑄0, making a total of 4𝑛2 arrows.
Define the involution (−)∨ ∶ 𝑄 ∼→ 𝑄op by exchanging the vertices 𝑖 and 𝑖∨ for all 𝑖 ∈ {1,… , 𝑛}.
The action on the arrows is determined accordingly. Let 𝑢, 𝑣 assign the sign +1 to all vertices
and arrows.

Let 𝒳 be the moduli of representations of 𝑄 as in §4.1.

For convenience, for vertices 𝑖∨ ∈ 𝑄0 with 𝑖 ∈ 𝐼 , we write 𝑒𝑖∨ = 𝑒∨𝑖 ∈ 𝐶𝐼 and 𝑒∨𝑖∨ = 𝑒𝑖 ∈ 𝐶𝐼 .

Let 𝐶′𝐼 be the set of all 𝛼 ∈ π0(𝒳) that is a non-zero sum of distinct elements of 𝐶𝐼 . For

such 𝛼 , let 𝐶𝛼 ⊂ 𝐶𝐼 be the set of terms appearing in 𝛼 . Define an object (𝐸𝛼 , 𝑒𝛼) ∈ 𝒜 by

𝐸𝛼𝑖 = { 𝐾, 𝑖 ∈ 𝐶𝛼 ,
0, otherwise ,

𝑒𝛼𝑖→𝑗 = { 1, 𝑖, 𝑗 ∈ 𝐶𝛼 ,
0, otherwise .

One can see that (𝐸𝛼 , 𝑒𝛼) is a simple object, and hence is semistable under any weak stability

condition.

Let Σ be the set of all 𝛼 = (𝛼1, … , 𝛼𝑚) with 𝑚 ⩾ 0 and 𝛼𝑠 ∈ 𝐶′𝐼 for all 𝑠, such that

𝛼1 +⋯+ 𝛼𝑚 ∈ 𝐶′𝐼 . For each 𝛼 ∈ Σ, define an object (𝐸𝛼 , 𝑒𝛼) ∈ 𝒜 by

(𝐸𝛼)𝑖 = { 𝐾, 𝑖 ∈ 𝐶𝛼𝑠 for some 𝑠 ,
0, otherwise ,

(𝑒𝛼)𝑖→𝑗 = { 1, 𝑖 ∈ 𝐶𝛼𝑠 and 𝑗 ∈ 𝐶𝛼𝑡 for some 𝑠 ⩾ 𝑡 ,
0, otherwise .
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Then (𝐸𝛼 , 𝑒𝛼) has a unique Jordan–Hölder filtration with quotients (𝐸𝛼1 , 𝑒𝛼1),… , (𝐸𝛼𝑚 , 𝑒𝛼𝑚).
Define a partial order ⪯ on Σ such that 𝛼 ⪯ 𝛼 ′ if and only if there exists 0 = 𝑠0 < ⋯ <

𝑠𝑚′ = 𝑚 such that 𝛼 ′𝑡 = 𝛼𝑠𝑡−1+1 +⋯ + 𝛼𝑠𝑡 for all 𝑡 , where 𝑚 and 𝑚′ are the lengths of 𝛼 and

𝛼 ′.

For a fixed weak stability condition 𝜏 , and for 𝛼 ∈ Σ, write 𝛿𝛼(𝜏) = [𝒳 ss𝛼1(𝜏)] ∗ ⋯ ∗
[𝒳 ss𝛼𝑛(𝜏)] ∈ 𝕄(𝒳;ℚ). Then 𝛿𝛼′(𝜏) being non-zero at (𝐸𝛼 , 𝑒𝛼) implies 𝛼 ⪯ 𝛼 ′, since any

filtration is refined by the Jordan–Hölder filtration. In particular, 𝛿𝛼(𝜏) is not in the linear

span of 𝛿𝛼′(𝜏) with 𝛼 /⪯ 𝛼 ′. Since ⪯ can be extended to a total order on the finite set Σ, we
conclude that the motives 𝛿𝛼(𝜏) ∈ 𝕄(𝒳;ℚ) for all 𝛼 ∈ Σ are linearly independent.

As a result, the motives 𝜖𝛼1(𝜏) ∗ ⋯ ∗ 𝜖𝛼𝑚(𝜏) ∈ 𝕄(𝒳;ℚ) are also linearly independent,

essentially because upper triangular matrices with 1’s on the diagonal are invertible.

At this point, as a side note, if we apply Theorem 7.1.3 to express [𝒳 ss𝛼 (𝜏̃)] in terms of

motives of 𝜏 -semistable loci, where 𝛼 = 𝑒1+⋯+𝑒𝑛, and compare the result with first convert-

ing 𝜏̃ -semistable loci to 𝜏̂ -semistable loci, and then converting to 𝜏 -semistable loci, we have

reproved (C.3.2.2). Applying this to 𝜖𝛼(𝜏) reproves (C.3.2.6).
Now, let Σsd be the set of 𝛼 = (𝛼1, … , 𝛼𝑚, 𝜌) such that each 𝛼𝑠 is in 𝐶′𝐼 , 𝜌 ∈ 𝐶′𝐼 ∪ {0},

𝜌 = 𝜌∨, and 𝛼1 + 𝛼∨1 +⋯+ 𝛼𝑚 + 𝛼∨𝑚 + 𝜌 ∈ 𝐶′𝐼 . For a fixed self-dual weak stability condition

𝜏 , and for 𝛼 ∈ Σsd, write 𝛿sd𝛼 (𝜏) = [𝒳 ss𝛼1(𝜏)] ⋄ ⋯ ⋄ [𝒳 ss𝛼𝑛(𝜏)] ⋄ [𝒳 sd,ss𝜌 (𝜏)] ∈ 𝕄(𝒳 sd; ℚ).
Similarly, we claim that the stack functions 𝛿sd𝛼 (𝜏) for all 𝛼 ∈ Σsd are linearly independent.

Indeed, for 𝛼 ∈ Σsd, define 𝛼̄ = (𝛼1, … , 𝛼𝑚, (𝜌,) 𝛼∨𝑚, … , 𝛼∨1 ) ∈ Σ, where 𝜌 appears only

when it is non-zero. The object (𝐸𝛼̄ , 𝑒𝛼̄) has a natural self-dual structure. Using its unique

Jordan–Hölder filtration, we can show that 𝛿sd𝛼 (𝜏) is not in the linear span of 𝛿sd𝛼′(𝜏) with

𝛼̄ /⪯ 𝛼̄ ′. Since the map 𝛼 ↦ 𝛼̄ is injective, it follows that the 𝛿sd𝛼 (𝜏) are linearly independent.

Similarly, it follows that the stack functions 𝜖𝛼1(𝜏) ⋄ ⋯ ⋄ 𝜖𝛼𝑚(𝜏) ⋄ 𝜖sd𝜌 for 𝛼 ∈ Σsd are

linearly independent.

Applying Theorem 7.1.3 to express [𝒳 sd,ss
𝜃 (𝜏̃)] in terms of motives of 𝜏 -semistable loci,

where 𝜃 = ̄𝑒1 +⋯+ ̄𝑒𝑛, and comparing the result with first converting 𝜏̃ -semistable loci to 𝜏̂ -
semistable loci, and then converting to 𝜏 -semistable loci, we have proved (C.3.2.4). Applying

this to 𝜖sd𝜃 (𝜏) proves (C.3.2.8).
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C.3.3. Now, define elements

𝑉(𝐼 ; 𝜏) = ∑
𝜎∈𝔖𝑛

𝑈(𝑒𝜎(1), … , 𝑒𝜎(𝑛); 0, 𝜏) ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) , (C.3.3.1)

𝑉 sd(𝐼 ; 𝜏) = ∑
𝑥∈𝑃𝐼

𝑈 sd(𝑥1, … , 𝑥𝑛; 0, 𝜏) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 (C.3.3.2)

in the algebra 𝐴𝐼 .

C.3.4. Theorem. We have

𝑉(𝐼 ; 𝜏) ∈ 𝐿𝐼 , (C.3.4.1)

𝑉 sd(𝐼 ; 𝜏) ∈ 𝑈(𝐿+𝐼 ) . (C.3.4.2)

Proof. The proof is essentially by formally inverting the results in Theorem C.2.2.

We use induction on 𝑛, and assume that the theorem is true for all smaller values of 𝑛. The
cases when 𝑛 = 1 in (C.3.4.1) and when 𝑛 = 0 in (C.3.4.2) are trivial, since there is nothing to

prove.

To prove (C.3.4.1), we may assume that 𝑛 > 1. By (C.3.2.5) and (C.3.2.6), for any 𝑥 ∈ 𝑃𝐼 ,

we have

∑
𝑦∈𝑄(𝑥)

𝑈(𝑦1, … , 𝑦𝑚; 0, 𝜏) ⋅
𝑚
∏
𝑖=1

𝑈(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 0) = 0 . (C.3.4.3)

Summing over all possibilities of 𝑥 = (𝑒𝜎(1), … , 𝑒𝜎(𝑛)) for 𝜎 ∈ 𝔖𝑛, we obtain that

∑
𝑚 ⩾ 1, 𝐼 = 𝐽1 ⊔⋯ ⊔ 𝐽𝑚 ∶
𝐽𝑖 ≠ ∅ for all 𝑖.
Write 𝑦𝑖 = ∑𝑗∈𝐽𝑖 𝑒𝑗

𝑈(𝑦1, … , 𝑦𝑚; 0, 𝜏) ⋅ 𝑇 (𝐽1; 𝜏) ∗ ⋯ ∗ 𝑇(𝐽𝑚; 𝜏) = 0 , (C.3.4.4)

where the 𝑇(𝐽𝑖; 𝜏) are as in (C.2.1.1). By Theorem C.2.2, 𝑇(𝐽𝑖; 𝜏) ∈ 𝐿𝐽𝑖 . Therefore, by the in-

duction hypothesis, that is, by (C.3.4.1) applied to𝑚 elements, if𝑚 < 𝑛, then for a fixed choice
of 𝐽1, … , 𝐽𝑚, the sum of all the 𝑚! terms in (C.3.4.4) involving a permutation of 𝐽1, … , 𝐽𝑚 is

in 𝐿𝐼 . Since (C.3.4.4) equals zero, the sum of the terms that were not involved above must lie

in 𝐿𝐼 as well. These are precisely the terms with 𝑚 = 𝑛. This gives that

∑
𝜎∈𝔖𝑛

𝑈(𝑒𝜎(1), … , 𝑒𝜎(𝑛); 0, 𝜏) ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) ∈ 𝐿𝐼 , (C.3.4.5)

which is a restatement of (C.3.4.1).
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To prove (C.3.4.2), we assume that 𝑛 > 0, and proceed as before. By (C.3.2.7)–(C.3.2.8), for

any 𝑥 ∈ 𝑃𝐼 , we have

∑
𝑦∈𝑄′(𝑥)

𝑈 sd(𝑦1, … , 𝑦𝑚; 0, 𝜏) ⋅ (
𝑚
∏
𝑖=1

𝑈(𝑥𝑎𝑖−1+1 , … , 𝑥𝑎𝑖 ; 𝜏 , 0)) ⋅

𝑈 sd(𝑥𝑎𝑚+1 , … , 𝑥𝑛; 𝜏 , 0) = 0 . (C.3.4.6)

Summing over all possibilities of 𝑥 ∈ 𝑃𝐼 , we obtain that

∑
𝑚 ⩾ 0, 𝐼 = 𝐽1 ⊔⋯ ⊔ 𝐽𝑚 ⊔ 𝐽 ′, 𝑥 𝑖 ∈ 𝑃𝐽𝑖 ∶
𝐽𝑖 ≠ ∅ for all 𝑖.
Write 𝑦𝑖 = ∑𝑗∈𝐽𝑖 𝑥𝑗

𝑈 sd(𝑦1, … , 𝑦𝑚; 0, 𝜏) ⋅ 𝑇 (𝑥1; 𝜏) ∗ ⋯ ∗ 𝑇(𝑥𝑚; 𝜏) ∗ 𝑇 sd(𝐽 ′; 𝜏) = 0 , (C.3.4.7)

where 𝑇 sd(𝐽 ′; 𝜏) is as in (C.2.1.3), and 𝑇(𝑥 𝑖; 𝜏) is as in (C.2.7.6). By Theorem C.2.2, 𝑇(𝑥 𝑖; 𝜏) ∈
𝐿𝐽𝑖 , and 𝑇 sd(𝐽𝑖; 𝜏) ∈ 𝑈(𝐿+𝐽 ′). For 𝑚 < 𝑛, fix a choice of 𝐽1, … , 𝐽𝑚, 𝐽 ′, and a choice of the

𝑥 𝑖. Let Σ be the sum of all the 2𝑚𝑚! terms in (C.3.4.7) involving a permutation of 𝐽1, … , 𝐽𝑚,
and for each 𝑖, either 𝑥 𝑖 or (𝑥 𝑖)∨, where if 𝑥 𝑖 = (𝑥1, … , 𝑥𝑘), then (𝑥 𝑖)∨ = (𝑥∨𝑘 , … , 𝑥∨1 ). Note
that as in the proof of (C.2.2.2), we have 𝑇((𝑥 𝑖)∨; 𝜏) = 𝑇(𝑥 𝑖; 𝜏)∨, where the latter (−)∨ is

the involution on 𝐴𝐼 . Now, we can apply the induction hypothesis, or (C.3.4.2) applied to 𝑚
elements, to see that Σ is a linear combination of products of elements either in 𝐿+𝐽 ′ , or of the

form 𝑇(𝑥 𝑖; 𝜏) − 𝑇(𝑥 𝑖; 𝜏)∨, which lie in 𝐿+𝐽𝑖 . Therefore, Σ ∈ 𝑈(𝐿+𝐼 ).
It then follows that the sum of the terms in (C.3.4.7) with 𝑚 = 𝑛 lies in 𝑈(𝐿+𝐼 ) as well,

which is, again, a restatement of (C.3.4.2).

C.3.5. Next, for two self-dual weak stability conditions 𝜏 , 𝜏̃ on 𝐼 , define elements

𝑊(𝐼 ; 𝜏 , 𝜏̃ ) = ∑
𝜎∈𝔖𝑛

𝑈(𝑒𝜎(1), … , 𝑒𝜎(𝑛); 𝜏 , 𝜏̃ ) ⋅ 𝑒𝜎(1) ∗⋯ ∗ 𝑒𝜎(𝑛) , (C.3.5.1)

𝑊 sd(𝐼 ; 𝜏 , 𝜏̃ ) = ∑
𝑥∈𝑃𝐼

𝑈 sd(𝑥1, … , 𝑥𝑛; 𝜏 , 𝜏̃ ) ⋅ 𝑥1 ∗⋯ ∗ 𝑥𝑛 (C.3.5.2)

in the algebra 𝐴𝐼 .

C.3.6. Theorem. We have

𝑊(𝐼 ; 𝜏 , 𝜏̃ ) ∈ 𝐿𝐼 , (C.3.6.1)

𝑊 sd(𝐼 ; 𝜏 , 𝜏̃ ) ∈ 𝑈(𝐿+𝐼 ) . (C.3.6.2)
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Proof. Applying (C.3.2.6) and (C.3.2.8) with 𝜏̂ = 0, we may rewrite

𝑊(𝐼 ; 𝜏 , 𝜏̃ ) = ∑
𝑚 ⩾ 1, 𝐼 = 𝐽1 ⊔⋯ ⊔ 𝐽𝑚 ∶
𝐽𝑖 ≠ ∅ for all 𝑖.
Write 𝑦𝑖 = ∑𝑗∈𝐽𝑖 𝑒𝑗

𝑈(𝑦1, … , 𝑦𝑚; 0, 𝜏̃ ) ⋅ 𝑇 (𝐽1; 𝜏) ∗ ⋯ ∗ 𝑇(𝐽𝑚; 𝜏) , (C.3.6.3)

𝑊 sd(𝐼 ; 𝜏 , 𝜏̃ ) = ∑
𝑚 ⩾ 0, 𝐼 = 𝐽1 ⊔⋯ ⊔ 𝐽𝑚 ⊔ 𝐽 ′, 𝑥 𝑖 ∈ 𝑃𝐽𝑖 ∶
𝐽𝑖 ≠ ∅ for all 𝑖.
Write 𝑦𝑖 = ∑𝑗∈𝐽𝑖 𝑥𝑗

𝑈 sd(𝑦1, … , 𝑦𝑚; 0, 𝜏̃ ) ⋅ 𝑇 (𝑥1; 𝜏) ∗ ⋯ ∗ 𝑇(𝑥𝑚; 𝜏) ∗ 𝑇 sd(𝐽 ′; 𝜏) .

(C.3.6.4)

Reasoning as in the proof of Theorem C.3.4, we can deduce (C.3.6.1) and (C.3.6.2) from Theor-

ems C.2.2 and C.3.4. Indeed, we no longer need to use induction, and instead of proving that

some of the terms lie in 𝐿𝐼 or 𝑈(𝐿+𝐼 ), the argument now shows that all the terms are in 𝐿𝐼 or

𝑈(𝐿+𝐼 ).

Finally, we deduce Theorem 7.2.3 from Theorem C.3.6.

C.3.7. Proof of Theorem 7.2.3. We only prove the self-dual case, as the linear case is already

proved by Joyce [83, Theorem 5.4], and can alternatively be shown using a similar argument.

For a permissible self-dual stability condition 𝜏 on𝒳 , Let𝐿𝜏 ⊂ 𝕄(𝒳;ℚ) be the smallestℚ-

linear subspace containing 𝜖𝛼(𝜏) for all 𝛼 ∈ π0(𝒳)∖{0} and closed under the involution (−)∨

and Lie brackets as in §7.2.2, and let 𝑀𝜏 ⊂ 𝕄(𝒳 sd; ℚ) be the smallest subspace containing

𝜖sd𝜌 (𝜏) for all 𝜌 ∈ π0(𝒳 sd) and closed under the operation 𝑎 ♡ (−) for 𝑎 ∈ 𝐿𝜏 .

We may rewrite (7.1.3.4) as

𝜖sd𝜃 (𝜏−) = ∑
𝑛 ⩾ 0

Write 𝐼 = {1,… , 𝑛}

1
2𝑛𝑛! ⋅ ∑

𝜅 ∶ 𝐼 → π0(𝒳) ∖ {0}, 𝜌 ∈ π0(𝒳 sd) ∶
𝜃 = ∑𝑖∈𝐼 (𝜅(𝑖) + 𝜅(𝑖)∨) + 𝜌

[ ∑
𝑥 ∈ 𝑃𝐼

Write 𝛼𝑖 = 𝜅(𝑗) if 𝑥𝑖 = 𝑒𝑗 ,
or write 𝛼𝑖 = 𝜅(𝑗)∨ if 𝑥𝑖 = 𝑒∨𝑗

𝑈 sd(𝛼1, … , 𝛼𝑛; 𝜏+, 𝜏−) ⋅ 𝜖𝛼1(𝜏+) ⋄⋯ ⋄ 𝜖𝛼𝑛(𝜏+) ⋄ 𝜖sd𝜌 (𝜏+)] , (C.3.7.1)

since every term in (7.1.3.4) appears 2𝑛𝑛! times in (C.3.7.1).

Now, every sum in the square brackets in (C.3.7.1) lies in 𝑀𝜏+ . This is because we can

define an involutive algebra homomorphism 𝜑 ∶ 𝐴𝐼 → 𝕄(𝒳;ℚ) by sending 𝑒𝑖 to 𝜖𝜅(𝑖)(𝜏+)
and 𝑒∨𝑖 to 𝜖𝜅(𝑖)∨(𝜏+). We have 𝜑(𝐿𝐼 ) ⊂ 𝐿𝜏+ , so 𝜑(𝐿+𝐼 ) ⊂ 𝐿+𝜏+ . The sum in the square brackets
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is 𝜑(𝑊 sd(𝐼 ; 𝜏+, 𝜏−)) ⋄ 𝜖sd𝜌 (𝜏+), so by Theorem C.3.6, it lies in 𝑈(𝐿+𝜏+) ⋄ 𝜖sd𝜌 (𝜏+) ⊂ 𝑀𝜏+ .

Moreover, the above also shows that every sum in the square brackets can be written as

a sum of terms of the form in (7.2.3.2), with the 𝑈̃ (…) coefficients. Each of these new terms

appears 2𝑛𝑛! times in (C.3.7.1). This proves the theorem.

C.4 Some combinatorial identities

Finally, we prove some combinatorial identities that were used in the arguments above. It is

interesting that by working with wall-crossing structures, we are able to write down several

combinatorial identities involving the Bernoulli numbers, namely, Lemmas C.4.2 to C.4.4, and

it is unclear whether there are deeper reasons why these identities are true.

C.4.1. Lemma. For any integers 𝑖, 𝑘, 𝑛 such that 1 ⩽ 𝑖 ⩽ 𝑛 and 1 ⩽ 𝑘 ⩽ 𝑛 − 1, we have

∑
𝑞 ∶ 0 ⩽ 𝑞 ⩽ 𝑛 − 𝑖,
0 ⩽ 𝑘 − 𝑞 ⩽ 𝑖 − 1

(−1)𝑞 ( 𝑘
𝑞 ) = (−1)𝑖+𝑘−1 (𝑘 − 1

𝑖 − 1 ) + (−1)𝑛−𝑖 (𝑘 − 1
𝑛 − 𝑖 ) . (C.4.1.1)

Proof. We have

l.h.s. =
𝑛−𝑖
∑

𝑞=𝑘−𝑖+1
(−1)𝑞 [(𝑘 − 1

𝑞 − 1) + (𝑘 − 1
𝑞 )]

= (−1)𝑘−𝑖+1 (𝑘 − 1
𝑘 − 𝑖 ) + (−1)𝑛−𝑖 (𝑘 − 1

𝑛 − 𝑖 )

= r.h.s.

C.4.2. Lemma. For any integers 1 ⩽ 𝑖 ⩽ 𝑛, we have
𝑖−1
∑
𝑝=0

𝑛−𝑖
∑
𝑞=0

(−1)𝑞 (𝑛 − 1)!
(𝑛 − 𝑝 − 𝑞)! 𝑝! 𝑞! 𝐵𝑝+𝑞(𝑥) = (𝑛 − 1

𝑖 − 1 ) 𝑥
𝑖−1 (1 − 𝑥)𝑛−𝑖 , (C.4.2.1)

where 𝐵𝑘(𝑥) denotes the 𝑘-th Bernoulli polynomial.

Proof. Let 𝑙(𝑥) and 𝑟(𝑥) denote the left and right sides of (C.4.2.1), respectively. By (C.4.1.1),
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we have

𝑙(𝑥) = 1
𝑛 𝐵0(𝑥) +

𝑛−1
∑
𝑘=1

(𝑛 − 1)!
(𝑛 − 𝑘)! 𝑘! [(−1)

𝑖+𝑘−1 (𝑘 − 1
𝑖 − 1 ) + (−1)𝑛−𝑖 (𝑘 − 1

𝑛 − 𝑖 )] 𝐵𝑘(𝑥)

= 1
𝑛 + (𝑛 − 1

𝑖 − 1 ) ⋅ [
𝑛−1
∑
𝑘=𝑖

(−1)𝑖+𝑘−1
𝑘 ( 𝑛 − 𝑖

𝑛 − 𝑘)𝐵𝑘(𝑥) +
𝑛−1
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖
𝑘 ( 𝑖 − 1

𝑛 − 𝑘)𝐵𝑘(𝑥)] .

Since 𝐵𝑘(𝑥 + 1) − 𝐵𝑘(𝑥) = 𝑘 𝑥𝑘−1, we have

𝑙(𝑥 + 1) − 𝑙(𝑥) = (𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛−1
∑
𝑘=𝑖

(−1)𝑖 ( 𝑛 − 𝑖
𝑛 − 𝑘) (−𝑥)

𝑘−1 +
𝑛−1
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) 𝑥
𝑘−1] .

On the other hand,

𝑟(𝑥 + 1) − 𝑟(𝑥) = (𝑛 − 1
𝑖 − 1 ) ⋅ [(𝑥 + 1)𝑖−1 (−𝑥)𝑛−𝑖 − 𝑥 𝑖−1 (1 − 𝑥)𝑛−𝑖]

= (𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛−1
∑
𝑘=𝑖

(−1)𝑖 ( 𝑛 − 𝑖
𝑛 − 𝑘) (−𝑥)

𝑘−1 +
𝑛−1
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) 𝑥
𝑘−1] .

Therefore, 𝑙(𝑥 + 1) − 𝑙(𝑥) = 𝑟(𝑥 + 1) − 𝑟(𝑥), which means that

𝑙(𝑥) − 𝑟(𝑥) = 𝑐

for some constant 𝑐. To show that 𝑐 = 0, we use the fact that

∫
1

0
𝐵𝑘(𝑥) 𝑑𝑥 = { 1, 𝑘 = 0 ,

0, 𝑘 > 0 ,
so

∫
1

0
𝑙(𝑥) 𝑑𝑥 = 1

𝑛 .

On the other hand,

∫
1

0
𝑟(𝑥) 𝑑𝑥 = (𝑛 − 1

𝑖 − 1 ) ⋅ B(𝑖, 𝑛 − 𝑖 + 1)

= (𝑛 − 1
𝑖 − 1 ) ⋅

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑛!

= 1
𝑛 ,

where B denotes the beta function. This shows that 𝑐 = 0.
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C.4.3. Lemma. For any integers 1 ⩽ 𝑖 ⩽ 𝑛,
𝑖−1
∑
𝑝=0

𝑛−𝑖
∑
𝑞=0

(−1)𝑞 2𝑝+𝑞−1 (𝑛 − 1)!
(𝑛 − 𝑝 − 𝑞)! 𝑝! 𝑞! 𝐵𝑝+𝑞(𝑥2 )

+
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖+1 2𝑘−1 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! [𝐵𝑘(𝑥2 ) − 𝐵𝑘(𝑥 + 1

2 )]

= (𝑛 − 1
𝑖 − 1 ) 𝑥

𝑖−1 (1 − 𝑥)𝑛−𝑖 . (C.4.3.1)

Proof. Let 𝑙1(𝑥), 𝑙2(𝑥) and 𝑟(𝑥) denote the first and second terms on the left-hand side

of (C.4.3.1), and the right-hand side, respectively.

By (C.4.1.1), we have

𝑙1(𝑥) = 1
2𝑛 𝐵0(𝑥2 ) +

𝑛−1
∑
𝑘=1

2𝑘−1 (𝑛 − 1)!
(𝑛 − 𝑘)! 𝑘! [(−1)𝑖+𝑘−1 (𝑘 − 1

𝑖 − 1 ) + (−1)𝑛−𝑖 (𝑘 − 1
𝑛 − 𝑖 )] 𝐵𝑘(𝑥2 )

= 1
2𝑛 + (𝑛 − 1

𝑖 − 1 ) ⋅ [
𝑛−1
∑
𝑘=𝑖

(−1)𝑖+𝑘−1 2𝑘−1
𝑘 ( 𝑛 − 𝑖

𝑛 − 𝑘)𝐵𝑘(𝑥2 ) +

𝑛−1
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖 2𝑘−1
𝑘 ( 𝑖 − 1

𝑛 − 𝑘)𝐵𝑘(𝑥2 )] .

Proceeding as in the proof of Lemma C.4.2, we see that

𝑙1(𝑥 + 2) − 𝑙1(𝑥) =

(𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛−1
∑
𝑘=𝑖

(−1)𝑖 ( 𝑛 − 𝑖
𝑛 − 𝑘) (−𝑥)

𝑘−1 +
𝑛−1
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) 𝑥
𝑘−1] .

Similarly,

𝑙2(𝑥 + 2) − 𝑙2(𝑥) =
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖+1 (𝑛 − 1)!
(𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! [𝑥

𝑘−1 − (𝑥 + 1)𝑘−1]

= (−1)𝑛−𝑖+1 (𝑛 − 1
𝑖 − 1 ) ⋅

𝑛
∑

𝑘=𝑛−𝑖+1
( 𝑖 − 1
𝑛 − 𝑘) [𝑥

𝑘−1 − (𝑥 + 1)𝑘−1] .

Setting 𝑙(𝑥) = 𝑙1(𝑥) + 𝑙2(𝑥), we see that

𝑙(𝑥 + 2) − 𝑙(𝑥)

= (𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛−1
∑
𝑘=𝑖

(−1)𝑖 ( 𝑛 − 𝑖
𝑛 − 𝑘) (−𝑥)

𝑘−1 +
𝑛−1
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) (𝑥 + 1)𝑘−1

+ (−1)𝑛−𝑖+1 [𝑥𝑛−1 − (𝑥 + 1)𝑛−1]]
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= (𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛
∑
𝑘=𝑖

(−1)𝑖 ( 𝑛 − 𝑖
𝑛 − 𝑘) (−𝑥)

𝑘−1 +
𝑛
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) (𝑥 + 1)𝑘−1] .

On the other hand,

𝑟(𝑥 + 2) − 𝑟(𝑥) = (𝑛 − 1
𝑖 − 1 ) ⋅ [((𝑥 + 1) + 1)𝑖−1 (−(𝑥 + 1))𝑛−𝑖 − 𝑥 𝑖−1 (1 − 𝑥)𝑛−𝑖]

= 𝑙(𝑥 + 2) − 𝑙(𝑥) .

This means that

𝑙(𝑥) − 𝑟(𝑥) = 𝑐

for some constant 𝑐. To show that 𝑐 = 0, we use the facts that

∫
2

0
𝐵𝑘(𝑥2 ) 𝑑𝑥 = { 2, 𝑘 = 0 ,

0, 𝑘 > 0 ,

∫
2

0
𝐵𝑘(𝑥 + 1

2 ) 𝑑𝑥 = 1
2𝑘−1 ,

so

∫
2

0
𝑙(𝑥) 𝑑𝑥 = 1

𝑛 +
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! .

On the other hand, we have seen in the proof of Lemma C.4.2 that

∫
1

0
𝑟(𝑥) 𝑑𝑥 = 1

𝑛 .

We then calculate

∫
2

1
𝑟(𝑥) 𝑑𝑥 = (𝑛 − 1

𝑖 − 1 ) ⋅∫
1

0
(−𝑥)𝑛−𝑖(1 + 𝑥)𝑖−1 𝑑𝑥

= (𝑛 − 1
𝑖 − 1 ) ⋅∫

1

0
[

𝑛
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖 ( 𝑖 − 1

𝑛 − 𝑘) 𝑥
𝑘−1] 𝑑𝑥

=
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑛−𝑖 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! .

This shows that 𝑐 = 0 and we are done.
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C.4.4. Lemma. For any integers 1 ⩽ 𝑖 ⩽ 𝑛,
𝑖−1
∑
𝑝=0

𝑛−𝑖
∑
𝑞=0

(−1)𝑝 2𝑝+𝑞−1 (𝑛 − 1)!
(𝑛 − 𝑝 − 𝑞)! 𝑝! 𝑞! 𝐵𝑝+𝑞(𝑥2 )

+
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑖+𝑘−𝑛−1 2𝑘−1 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)! [𝐵𝑘(𝑥2 ) − 𝐵𝑘(𝑥 + 1

2 )] = 0 . (C.4.4.1)

Proof. Let 𝑙(𝑥) denote the left-hand side. From a similar calculation as in the previous lemma,

we have

𝑙(𝑥 + 2) − 𝑙(𝑥)

= (𝑛 − 1
𝑖 − 1 ) ⋅ [

𝑛
∑
𝑘=𝑖

(−1)𝑖−1 ( 𝑛 − 𝑖
𝑛 − 𝑘) 𝑥

𝑘−1 +
𝑛
∑

𝑘=𝑛−𝑖+1
(−1)𝑛−𝑖+1 ( 𝑖 − 1

𝑛 − 𝑘) (−𝑥 − 1)𝑘−1].

= (𝑛 − 1
𝑖 − 1 ) ⋅ [(−𝑥)

𝑖−1 (1 + 𝑥)𝑛−𝑖 − ((−𝑥 − 1) + 1)𝑖−1 (𝑥 + 1)𝑛−𝑖]

= 0 .

Therefore, 𝑙(𝑥) is constant. Again, calculating as before,

∫
2

0
𝑙(𝑥) 𝑑𝑥 = 1

𝑛 +
𝑛
∑

𝑘=𝑛−𝑖+1

(−1)𝑖+𝑘−𝑛 (𝑛 − 1)!
𝑘 (𝑛 − 𝑘)! (𝑛 − 𝑖)! (𝑖 + 𝑘 − 𝑛 − 1)!

= 1
𝑛 − (𝑛 − 1

𝑛 − 𝑖 ) ⋅∫
1

0
𝑥𝑛−𝑖 (1 − 𝑥)𝑖−1 𝑑𝑥

= 1
𝑛 − 1

𝑛 = 0 ,

where the second integral was evaluated as in the proof of Lemma C.4.2. This shows that

𝑙(𝑥) ≡ 0.
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