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ABSTRACT

We present several methods of showing the existence of stably irrational
varieties within a given family, and we show the infinitude of stable birational
classes in the family of quartic threefolds.
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1 Introduction

For a projective variety, there are various notions of rationality, describing how
close a variety is to the projective space.

Definition 1.1. Let k be a field, and let 𝑋 be a projective k-variety.

• 𝑋 is rational, if there exists 𝑛 ∈ N, such that

𝑋 is birational to P𝑛
k.

Equivalently, we have k(𝑋) ≃ k(𝑥1, … , 𝑥𝑛) as k-algebras.

• 𝑋 is stably rational, if there exist 𝑚, 𝑛 ∈ N, such that

𝑋 × P𝑚
k is birational to P𝑛

k.

Equivalently, we have k(𝑋)(𝑦1, … , 𝑦𝑚) ≃ k(𝑥1, … , 𝑥𝑛) as k-algebras.

• 𝑋 is retract rational, if there exists 𝑛 ∈ N, and open sets 𝑈 ⊂ 𝑋, 𝑉 ⊂ P𝑛
k,

together with two maps

𝑓 ∶ 𝑈 → 𝑉 , 𝑔 ∶ 𝑉 → 𝑈,

such that 𝑔 ∘ 𝑓 = id𝑈 .

• 𝑋 is unirational, if there exists a dominant rational map

P𝑛
k ⇢ 𝑋.

Equivalently, there exists a map k(𝑋) → k(𝑥1, … , 𝑥𝑛) of k-algebras.

• 𝑋 is rationally connected, if for every algebraically closed fieldK containing
k, and any two K-points 𝑥, 𝑦 ∈ 𝑋(K), there exists a rational curve

𝑓 ∶ P1
K → 𝑋K

joining them, i.e. we have 𝑓(0) = 𝑥 and 𝑓(∞) = 𝑦.

These notions are sorted from strong to weak, i.e. every notion implies its next
one. A natural question to ask is that whether these implications are strict.

In 1972, Artin and Mumford [AM72] gave an example of a variety that is uni-
rational but not retract rational. More recently, Voisin [Voi15] developed a defor-
mation method which can show that a very general member of a family of varieties
is not retract rational, as long as it contains one particular example that is not retract
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rational. This method was then modified by Colliot-Thélène and Pirutka [CTP16]
to show that overC, a very general quartic hypersurface in P4 is not retract rational.
They also developed the specialisation method, with which they can provide more
general examples of smooth varieties that are not retract rational over number fields
and local fields.

In this article, we give an exposition of the methods and results mentioned
above, andwe show the infinitude of stable birational classes in the family of quartic
threefolds (Theorem 5.7).

2 Criteria for rationality

In this section, we relate rationality with several other invariants of a variety. We
show that retract rationality implies that these invariants are trivial. The results are
summarised in the following diagram, although some assumptions are dropped:

retract
rational ⟹ universally

CH0-trivial
⟺ decomposition

of the diagonal ⟹ trivial
Brauer group.

Chow groups

In this subsection, we recall the definition and some basic properties of the Chow
groups of a variety. A general reference is [Ful98].

In the following, let k be a field, and let 𝑋 be a k-variety.

Definition 2.1. Let 𝑑 be an non-negative integer. The free abelian group

Z𝑑(𝑋) = ⨁
𝑍⊂𝑋

Z ⋅ [𝑍],

where 𝑍 runs through all 𝑑-dimensional integral closed subvarieties of 𝑋, is called
the group of 𝑑-cycles of 𝑋.

In other words, a 𝑑-cycle of 𝑋 is a finite sum ∑ 𝑛𝑖[𝑍𝑖], where each 𝑛𝑖 is an
integer, and each 𝑍𝑖 is a subvariety of 𝑋. For example, a 0-cycle is a linear com-
bination of closed points.

Let 𝑉 ⊂ 𝑋 be a (𝑑 + 1)-dimensional integral closed subvariety, and let 𝑓 ∈
k(𝑉 )× be a rational function on 𝑉 . The principal divisor of 𝑉 corresponding to 𝑓 ,
denoted by div(𝑓 ), can be naturally seen as a 𝑑-cycle of 𝑋. This defines a map of
abelian groups

div∶ k(𝑉 )× → Z𝑑(𝑋).

Definition 2.2. The 𝑑-th Chow group of 𝑋 is defined by

CH𝑑(𝑋) = coker( ⨁
𝑉 ⊂𝑋

k(𝑉 )× → Z𝑑(𝑋)),

where 𝑉 runs through all (𝑑 + 1)-dimensional integral closed subvarieties of 𝑋.
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If 𝑋 has dimension 𝑛, we write

Z𝑑(𝑋) = Z𝑛−𝑑(𝑋) and CH𝑑(𝑋) = CH𝑛−𝑑(𝑋).

An element of the Chow group is thus a class of cycles. We say that the cycles
in the same class are rationally equivalent.

Here we explain four operations of the Chow group: proper pushforward, flat
pullback, the intersection product, and the Gysin map.

Definition 2.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper map of k-varieties, and let 𝑍 ⊂ 𝑋 be
an integral closed subvariety of dimension 𝑑. We define

𝑓∗[𝑍] =
{

0, if dim 𝑓(𝑍) < 𝑑,
[k(𝑓 (𝑍)) ∶ k(𝑍)] [𝑓 (𝑍)], if dim 𝑓(𝑍) = 𝑑,

as a 𝑑-cycle of 𝑌 , where

• 𝑓(𝑍) is an irreducible closed subset of 𝑌 , which we see as an integral closed
subscheme.

• The field extension k(𝑓 (𝑍))∕k(𝑍) is finite because it is finitely generated
and of transcendence degree 0.

This extends linearly to a pushforward map

𝑓∗ ∶ Z𝑑(𝑋) → Z𝑑(𝑌 ).

It turns out that proper pushforward preserves rational equivalence [Ful98,
§1.4]. We thus obtain a pushforward map of Chow groups

𝑓∗ ∶ CH𝑑(𝑋) → CH𝑑(𝑌 ).

Next, we introduce the flat pullback of Chow groups.

Definition 2.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a map of k-varieties, which is flat of relative
dimension 𝑟. Let 𝑍 ⊂ 𝑋 be an integral closed subvariety of dimension 𝑑. We
define

𝑓 ∗[𝑍] = [𝑓 −1(𝑍)]

as a (𝑑 + 𝑟)-cycle of 𝑌 , where

• 𝑓 −1(𝑍) is the scheme-theoretic inverse image, i.e., 𝑍 ×𝑌 𝑋.

• [𝑓 −1(𝑍)] denotes the sum∑𝑚𝑖[𝑍𝑖], where the 𝑍𝑖 are the irreducible com-
ponents of 𝑓 −1(𝑍), and 𝑚𝑖 is the geometric multiplicity of 𝑍𝑖 in 𝑓 −1(𝑍),
defined as the length of the local ring 𝒪𝑓 −1(𝑍),𝑍𝑖 .

This extends linearly to a pullback map

𝑓 ∗ ∶ Z𝑑(𝑌 ) → Z𝑑+𝑟(𝑋).
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It turns out again that flat pullback preserves rational equivalence [Ful98, §1.7].
Switching to the cohomological indexing notation, we get a pullback map of Chow
groups

𝑓 ∗ ∶ CH𝑑(𝑌 ) → CH𝑑(𝑋).

Now, we introduce the intersection product of cycles.
Let 𝑍1, 𝑍2 ⊂ 𝑋 be two integral closed subvarieties. We can form their

“scheme-theoretic intersection”

𝑍1 ∩ 𝑍2 = 𝑍1 ×𝑋 𝑍2.

However, this does not always produce cycles of the expected dimension, as the
subvarieties may not be in a general position to intersect. To work around this
difficulty, we use the Gysin map of the diagonal map, which acts as a pullback
along a closed embedding.

The Gysin map is defined for vector bundles as follows.

Theorem 2.5. Let 𝑝∶ 𝐸 → 𝑋 be a vector bundle of rank 𝑟. Then the flat pullback

𝑝∗ ∶ CH𝑑(𝑋) → CH𝑑+𝑟(𝐸)

is an isomorphism for all 𝑑. Its inverse is called the Gysin map, and denoted by 𝑖!,
where 𝑖 is the zero section map 𝑋 → 𝐸.

See [Ful98, §3.3].
Recall that a regular embedding is a closed embedding of schemes, such that

the ideal sheaf is locally generated by regular sequences. For example, a closed
embedding of smooth varieties is always a regular embedding.

For a regular embedding, the normal cone is a vector bundle. We can use this
property to extend the definition of the Gysin map to this case.

Definition 2.6. Let 𝑖∶ 𝑍 → 𝑋 be a regular embedding of constant codimension 𝑒.
The Gysin map

𝑖! ∶ CH𝑑(𝑋) → CH𝑑−𝑒(𝑍)

is defined as follows. Let 𝑁𝑍𝑋 denote the normal bundle of 𝑍 in 𝑋, and let

𝜎 ∶ Z𝑑(𝑋) → Z𝑑(𝑁𝑍𝑋)

be the map given by
[𝑉 ] ↦ [𝑁𝑍∩𝑉 𝑉 ].

This map respects rational equivalence [Ful98, §5.2], inducing a map

𝜎 ∶ CH𝑑(𝑋) → CH𝑑(𝑁𝑍𝑋)

We then compose this map with the Gysin map defined in Theorem 2.5, giving the
desired map

𝑖! ∶ CH𝑑(𝑋) → CH𝑑−𝑒(𝑍).
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Using the Gysin map as a pullback along the diagonal map, we can define the
intersection product of cycles.

Definition 2.7. Let 𝑋 be an 𝑛-dimensional projective variety. The intersection
product is a map of graded abelian groups

⋅∶ CH•(𝑋) ⊗ CH•(𝑋) → CH•(𝑋),

defined as follows.

• If 𝑋 is smooth, we define this map by the composition

CH𝑑1 (𝑋) ⊗ CH𝑑2 (𝑋) ×⟶ CH𝑑1+𝑑2 (𝑋 × 𝑋) Δ!
⟶ CH𝑑1+𝑑2−𝑛(𝑋),

where × denotes the cross product map sending [𝑍1] ⊗ [𝑍2] to [𝑍1 × 𝑍2],
and Δ∶ 𝑋 → 𝑋 × 𝑋 is the diagonal map, which is a regular embedding.

• If 𝑋 is arbitrary, we can always embed 𝑋 in some P𝑁 , so that we can regard
cycles of 𝑋 as cycles of P𝑁 , and intersect them in P𝑁 .

This product equips the Chow groups with the structure of a graded ring, called
the Chow ring.

Rationality and zero‐cycles

Definition 2.8. We say that a map 𝑓 ∶ 𝑋 → 𝑌 of k-varieties is universally CH0-
trivial, if

• 𝑓 is proper.

• For any field extension 𝐹 ∕k, the pushforward map

𝑓∗ ∶ CH0(𝑋𝐹 ) → CH0(𝑌𝐹 )

is an isomorphism.

If 𝑌 = Speck, then we say 𝑋 is universally CH0-trivial. This means that

• 𝑋 is complete.

• For any field extension 𝐹 ∕k, the degree map

deg𝐹 ∶ CH0(𝑋𝐹 ) → Z

is an isomorphism.

We will show that retract rationality implies universal CH0 triviality. The proof
will need a few lemmas. First of all, we prove a moving lemma for 0-cycles.
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Lemma 2.9. Let 𝑋 be a smooth projective k-variety, with k infinite and perfect,
and let𝑈 ⊂ 𝑋 be a dense open set. Then every 0-cycle of𝑋 is rationally equivalent
to one supported in 𝑈 .

Proof. We follow [CT05, Complément]. Write 𝑍 = 𝑋 ⧵ 𝑈 , and let 𝑝 ∈ 𝑍 be a
closed point. It suffices to show that the 0-cycle [𝑝] is equivalent to one supported
in 𝑈 .

Let 𝑔 ∈ 𝒪𝑋,𝑝 be a locally defined non-zero function that vanishes on 𝑍. Since
𝑋 is smooth, we can find a regular sequence 𝑓1, … , 𝑓𝑛−1 of𝒪𝑋,𝑝, where 𝑛 = dim𝑋,
such that 𝑔 ≠ 0 in the quotient 𝒪𝑋,𝑝∕(𝑓1, … , 𝑓𝑛−1). This can be done by working
in affine coordinates and taking the 𝑓𝑖 to be linear functions.

The ideal (𝑓1, … , 𝑓𝑛−1) defines a curve in a neighbourhood of 𝑝. Taking its
closure in 𝑋, we obtain a closed integral curve 𝐶 in 𝑋, which is regular at 𝑝 and is
not contained in 𝑍.

Let 𝑓 ∶ 𝐷 → 𝐶 be the normalisation of 𝐶 . Then 𝐷 is regular (normality im-
plies regularity in codimension one), and hence smooth since k is perfect. Also,
𝐷 is quasi-projective [EGA-II, Corollary 7.4.10], and 𝑓 is finite [EGA-II, Corol-
lary 7.4.6], and hence proper [EGA-II, Corollary 6.1.11].

Let 𝑞 be the inverse image of 𝑝, which is a single point as 𝐶 is regular at 𝑝. Let
𝑊 be a neighbourhood of 𝑞 in 𝐷, such that 𝑓|𝑊 is an isomorphism. For example,
we can take 𝑊 to be the inverse image of the smooth locus of 𝐶 .

The 0-cycle [𝑞] is equivalent to a 0-cycle supported in 𝑊 ⧵ 𝑓 −1(𝑍). Indeed,
we have to find a rational function on 𝐷 that has a simple zero at 𝑞, and is defined
on the finite set (𝐷 ⧵ 𝑊 ) ∪ 𝑓 −1(𝑍). As 𝐷 is quasi-projective, this can be done by
taking a suitable linear function on the projective space.

Finally, we consider the pushforward along the proper map 𝐷 → 𝐶 → 𝑋.
Since it preserves rational equivalence, we are done. ◻

Remark 2.10. This is a special case of [EGA-II, Proposition 7.4.9], but the proof
given here is more elementary.

Lemma 2.11. Let k be a finite field, and let 𝑈 ⊂ P𝑛
k be a non-empty open set.

Then for any extension 𝐹 ∕k of sufficiently large degree 𝑑, the open set 𝑈𝐹 ⊂ P𝑛
𝐹

contains an 𝐹 -rational point.

Proof. Let 𝑞 be the cardinality of k. Let 𝑓 be a non-zero homogeneous polynomial
over k, which vanishes outside 𝑈 .

In P𝑛
𝐹 , when 𝑞𝑑 > deg 𝑓 , there are at least (𝑞𝑑 − deg 𝑓)𝑛 rational points where

𝑓 does not vanish. Indeed, by induction on 𝑛, one easily shows that a non-zero
polynomial of degree 𝑟 on A𝑛

𝐹 does not vanish at at least (𝑞𝑑 − 𝑟)𝑛 rational points,
provided that 𝑞𝑑 > 𝑟.

Hence 𝑈𝐹 contains a rational point whenever 𝑞𝑑 > deg 𝑓 . ◻

Theorem 2.12 (Colliot-Thélène and Pirutka). Let 𝑋 be a smooth projective k-
variety. If 𝑋 is retract rational, then 𝑋 is universally CH0-trivial.
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Proof. First, we suppose that the base field k is infinite. Since retract rationality is
preserved under change of base field, it suffices to prove that 𝑋 is CH0-trivial over
k, i.e. degk ∶ CH0(𝑋) → Z is an isomorphism.

By definition, there exist non-empty open sets 𝑈 ⊂ 𝑋, 𝑉 ⊂ P𝑛
k, and maps

𝑈 𝑓⟶ 𝑉 𝑔⟶ 𝑈,

whose composition is id𝑈 .
Let 𝑃 ∈ 𝑈 be a closed point, and write 𝑄 = 𝑓(𝑃 ) ∈ 𝑉 . Then we have

induced maps of residue fields 𝜅(𝑃 ) → 𝜅(𝑄) → 𝜅(𝑃 ), whose composition is
id𝜅(𝑃 ). Therefore, we have

𝜅(𝑃 ) ≃ 𝜅(𝑄).

Let 𝐹 denote this field. We then consider the diagram

P𝑛
𝐹 ⊃ 𝑉𝐹 𝑈𝐹 ⊂ 𝑋𝐹

P𝑛
k ⊃ 𝑉 𝑈 ⊂ 𝑋 .

𝑝

𝑔𝐹

𝑔

There exists𝑅 ∈ 𝑝−1(𝑄) such that 𝜅(𝑅) ≃ 𝐹 . This is because 𝑝−1(𝑄) ≃ Spec(𝐹 ⊗k
𝐹 ), and we can take 𝑅 to be the point defined by the maximal ideal which is the
kernel of the multiplication map 𝐹 ⊗k 𝐹 → 𝐹 .

Let 𝐴 ∈ 𝑉 ⊂ P𝑛
k be a k-rational point, which exists since k is infinite. Let

𝐿 ≃ P1
𝐹 ⊂ P𝑛

𝐹 be a line connecting 𝑅 and 𝐴𝐹 . The map 𝑔𝐹 sends 𝐿 to a rational
line 𝐿′ in 𝑈𝐹 , which is a rational 𝐹 -map P1

𝐹 ⇢ 𝑈𝐹 . This map extends to a map

𝐿′ ∶ P1
𝐹 → 𝑋𝐹 ,

which is proper since P1
𝐹 is complete [EGA-II, Corollary 5.4.3]. This is a line

connecting the points 𝑔𝐹 (𝑅) and 𝑔𝐹 (𝐴𝐹 ).
As 𝑅 is an 𝐹 -rational point, we have 𝜅(𝑔𝐹 (𝑅)) ≃ 𝐹 and 𝜅(𝑔𝐹 (𝐴𝐹 )) ≃ 𝐹 .

Hence, the pushforward map of 𝐿′ on CH0 gives

[𝑔𝐹 (𝑅)] = [𝑔𝐹 (𝐴𝐹 )] ∈ CH0(𝑋𝐹 ).

Pushing forward to 𝑋, and noticing that 𝜅(𝑔(𝐴)) ≃ k, we thus have

[𝑃 ] = [𝐹 ∶ k] [𝑔(𝐴)] ∈ CH0(𝑋).

By the moving lemma 2.9, every 0-cycle of 𝑋 is equivalent to one supported
in 𝑈 , which, as we have shown, is equivalent to a multiple of [𝑔(𝐴)]. Since
degk [𝑔(𝐴)] = 1, this shows that 𝑋 is CH0-trivial over k.

Finally, if k is a finite field, by Lemma 2.11, we can apply the above argument
to an extension 𝐹 ∕k of sufficiently large degree 𝑑. Since the composition

CH0(𝑋) 𝑝∗
⟶ CH0(𝑋𝐹 )

𝑝∗⟶ CH0(𝑋)
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is multiplication by 𝑑, where 𝑝∶ 𝑋𝐹 → 𝑋 is the projection, it follows that every
0-cycle of 𝑋 of degree 0 is 𝑑-torsion in CH0(𝑋). Hence it must be zero, since 𝑑
can be chosen to be two coprime values. Moreover, this also shows that 𝑋 has two
0-cycles of coprime degrees, and hence, the degree map deg∶ CH0(𝑋) → Z is
surjective. ◻

We also mention the following criterion for universal CH0-triviality of a mor-
phism, which will be useful later.

Theorem 2.13 (Colliot-Thélène and Pirutka). Let 𝑓 ∶ 𝑋 → 𝑋 be a proper mor-
phism of k-varieties. Suppose that

• For every point 𝑀 ∈ 𝑋, not necessarily closed, the fibre 𝑋𝑀 is universally
CH0-trivial as a 𝜅(𝑀)-variety.

Then 𝑓 is universally CH0-trivial.

Proof. It suffices to show that 𝑓∗ ∶ CH0(𝑋) → CH0(𝑋) is an isomorphism.
By assumption, this map 𝑓∗ is surjective. Let 𝑥 be a 0-cycle of 𝑋, such that

𝑓∗(𝑥) is equivalent to zero. We need to show that 𝑥 is equivalent to zero.
In this case, there exist finitely many integral curves 𝐶𝑖 ⊂ 𝑋, and functions

𝑔𝑖 ∈ k(𝐶𝑖), such that
𝑓∗(𝑥) = ∑𝑖 div𝐶𝑖 (𝑔𝑖).

Let 𝜂𝑖 be the generic point of 𝐶𝑖. By hypothesis, each fibre 𝑋𝜂𝑖 contains a 0-cycle

∑𝑗 𝑛𝑖𝑗[𝐷𝑖𝑗]

of degree 1, where 𝑛𝑖𝑗 ∈ Z. We regard each 𝐷𝑖𝑗 as a curve in 𝑋. Then each
function 𝑔𝑖 ∘ 𝑓 defines a rational function 𝑔𝑖𝑗 on 𝐷𝑖𝑗 . Write

𝑥′ = 𝑥 − ∑𝑖,𝑗 𝑛𝑖𝑗 div𝐷𝑖𝑗 (𝑔𝑖𝑗).

Then we have an equality of cycles 𝑓∗(𝑥′) = 0.
Let us write 𝑥′ = ∑𝑖 𝑥′

𝑄𝑖 , where 𝑄𝑖 ∈ 𝑋 are distinct points, and 𝑥′
𝑄𝑖 is a 0-

cycle of 𝑋 supported in the fibre 𝑋𝑄𝑖 . The fact that 𝑓∗(𝑥′) = 0 implies that each
𝑥′

𝑄𝑖 has degree 0. It follows from the hypothesis applied to𝑋𝑄𝑖 that 𝑥′
𝑄𝑖 is rationally

equivalent to zero. Therefore, 𝑥′ is equivalent to zero, and so is 𝑥. ◻

Decomposition of the diagonal

We now give an equivalent characterisation of universal CH0-triviality. We show
that it is equivalent to the existence of a decomposition of the diagonal class in the
Chow group of 𝑋 × 𝑋.
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Definition 2.14. Let 𝑋 be a complete k-variety of dimension 𝑛. A decomposition
of the diagonal of 𝑋 is given by an equation

[Δ𝑋] = 𝐷 + [𝑋] × 𝑥0 in CH𝑛(𝑋 × 𝑋),

where

• [Δ𝑋] is the pushforward of [𝑋] ∈ CH𝑛(𝑋) along the diagonal map 𝑋 →
𝑋 × 𝑋.

• 𝐷 is an 𝑛-cycle of 𝑋 × 𝑋, supported in 𝑍 × 𝑋 for some closed subvariety
𝑍 ⊂ 𝑋 of codimension at least 1.

• 𝑥0 is a 0-cycle of 𝑋 of degree 1.

In order to show that this property is equivalent to CH0-triviality, we introduce
the notion of a correspondence.

Definition 2.15. Let 𝑋 and 𝑌 be complete k-varieties, of dimensions 𝑚 and 𝑛,
respectively. A correspondence from 𝑋 to 𝑌 is an element of the set

Corr(𝑋, 𝑌 ) = CH𝑚(𝑋 × 𝑌 ).

We view a correspondence as a generalised version of a graph of a map from 𝑋
to 𝑌 . In this way, we can compose correspondences as if we are composing graphs
of maps. Namely, for 𝑓 ∈ Corr(𝑋, 𝑌 ) and 𝑔 ∈ Corr(𝑌 , 𝑍), we define

𝑔 ∘ 𝑓 = 𝑝∗(([𝑋] × 𝑔) ⋅ (𝑓 × [𝑍])) ∈ Corr(𝑋, 𝑍),

where 𝑝∶ 𝑋 × 𝑌 × 𝑍 → 𝑋 × 𝑍 is the projection map.
Moreover, we have a group homomorphism

Corr(𝑋, 𝑌 ) ⊗Z CH•(𝑋) → CH•(𝑌 ),
(𝑓 , 𝛼) ↦ 𝑝∗(𝑓 ⋅ (𝛼 × [𝑌 ])),

(2.15.1)

where 𝑝∶ 𝑋 × 𝑌 → 𝑌 is the projection map. In particular, this induces an action
of Corr(𝑋, 𝑋) on CH•(𝑋).

Proposition 2.16. Complete k-varieties and correspondences form a category,
which admits a functor from the category of complete k-varieties and k-maps. The
functor CH• factors through this functor. ◻

Before proving the main theorem, we need a lemma.

Lemma 2.17. Let 𝑋 be an integral k-variety, and let 𝜂 be its generic point. Con-
sider the map

𝜂 × id𝑋 ∶ Spec(k(𝑋)) × 𝑋 ≃ 𝑋k(𝑋) → 𝑋 × 𝑋.

The pullback of the diagonal class is the class of the generic point of 𝑋, which is a
0-cycle of 𝑋k(𝑋) of degree 1.
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Proof. We may assume 𝑋 = Spec𝐴 is affine. Then the pullback of the diagonal
class is the closed point defined by the maximal ideal, which is the kernel of the
multiplication map

k(𝑋) ⊗ 𝐴 → k(𝑋).

The residue field is thus k(𝑋). ◻

Theorem 2.18 (Colliot-Thélène and Pirutka). Let 𝑋 be a smooth, integral, com-
plete k-variety. Then the following are equivalent.

(i) 𝑋 is universally CH0-trivial.

(ii) 𝑋 has a 0-cycle of degree 1, and the degree map deg∶ CH0(𝑋k(𝑋)) → Z is
an isomorphism.

(iii) 𝑋 admits a decomposition of the diagonal.

Proof. The implication (i) ⇒ (ii) follows from the definition of universal CH0-
triviality.

Assume (ii). Let 𝛼 be a 0-cycle of 𝑋 of degree 1, and let 𝛽 ∈ CH0(𝑋k(𝑋)) be
the class of the generic point of 𝑋. Then by hypothesis, we have

𝛼k(𝑋) = 𝛽 in CH0(𝑋k(𝑋)).

By [Blo10, Lemma 1A.1], we have

CH𝑛(𝑋k(𝑋)) ≃ colim
𝑈⊂𝑋 open

CH𝑛(𝑈 × 𝑋).

By Lemma 2.17, the map CH𝑛(𝑋 × 𝑋) → CH𝑛(Spec(k(𝑋)) × 𝑋) ≃ CH0(𝑋k(𝑋))
maps the diagonal class [Δ𝑋] to 𝛽. Therefore, there exists a non-empty open set
𝑈 ⊂ 𝑋, such that

[𝑈] × 𝛼 = [Δ𝑈 ] in CH𝑛(𝑈 × 𝑋).

Let 𝑍 = 𝑋 ⧵ 𝑈 . By [Ful98, §1.8], we have an exact sequence

CH𝑛(𝑍 × 𝑋) → CH𝑛(𝑋 × 𝑋) → CH𝑛(𝑈 × 𝑋) → 0,

which implies that there exists 𝐷 ∈ CH𝑛(𝑍 × 𝑋), such that

𝐷 = [𝑋] × 𝛼 − [Δ𝑋] in CH𝑛(𝑋 × 𝑋).

This proves (iii).
Now assume (iii), and let

[Δ𝑋] = 𝐷 + [𝑋] × 𝑥0 in CH𝑛(𝑋 × 𝑋)

be a decomposition, with 𝐷 supported in 𝑍 × 𝑋. Let 𝐹 be an extension of k.
Consider the action of Corr(𝑋, 𝑋) on CH0(𝑋𝐹 ), as defined in (2.15.1). Since

[Δ𝑋] acts as the identity, so does 𝐷 + [𝑋] × 𝑥0.
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On the other hand, by the moving lemma 2.9, every 0-cycle of 𝑋 can be moved
out of 𝑍. This shows that the action of 𝐷 is 0, as in the defining equation (2.15.1),
we are taking the intersection product of two disjoint cycles. But for any 0-cycle 𝛾
of 𝑋, the action of [𝑋] × 𝑥0 sends it to

𝑝∗(([𝑋] × 𝑥0) ⋅ (𝛾 × [𝑋])) = 𝑝∗(𝛾 × 𝑥0) = (deg 𝛾) 𝑥0,

where 𝑝∶ 𝑋 × 𝑋 → 𝑋 is the second projection. This implies that CH0(𝑋𝐹 ) is
generated by 𝑥0, which has degree 1. This proves (i). ◻

The Brauer group

In this subsection, we show that the existence of a decomposition of the diagonal
implies the triviality of the Brauer group.

Definition 2.19. The (cohomological) Brauer group of a scheme 𝑋 is the étale
cohomology group

Br(𝑋) = 𝐻2(𝑋,Gm).

For a field k, the Brauer group Br(k) = Br(Speck) coincides with the classical
notion defined as the group of equivalence classes of central simple algebras. A
classical reference is [Gro68].

The Kummer exact sequence of étale sheaves

0 → μ𝑛 → Gm
(−)𝑛
−−−→ Gm → 0

induces a long exact sequence

⋯ → Pic(𝑋) → 𝐻2(𝑋,μ𝑛) → Br(𝑋) ⋅𝑛−→ Br(𝑋) → ⋯ .

When 𝑋 = Spec𝑅, where 𝑅 is a local ring, we have Pic(𝑋) = 0, so that

Br(𝑋) [𝑛] ≃ 𝐻2(𝑋,μ𝑛),

where the left hand side denotes the 𝑛-torsion subgroup of Br(𝑋).

Definition 2.20. Let 𝑀 be a contravariant functor from schemes to abelian groups
(e.g. étale cohomology), and let k ⊂ K be two fields. Let

𝑀nr(K∕k) = ⋂
k⊂𝐴⊂K

image(𝑀(Spec𝐴) → 𝑀(SpecK)),

where 𝐴 runs through all discrete valuation rings with fraction field K.

This is called the unramified version of the functor𝑀 . For example, one has the
unramified Brauer group Brnr(K∕k), and unramified cohomology 𝐻𝑞

nr(K∕k,μ𝑛).
A deep result on the cohomological purity of the Brauer group gives rise to the

following theorem.
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Theorem 2.21. Let 𝑋 be a regular, complete, integral k-variety. Then the natural
map Br(𝑋) → Br(k(𝑋)) induces an isomorphism

Br(𝑋) ≃ Brnr(k(𝑋)∕k).

See [CTS19, Proposition 5.2.2].
The discussion above immediately implies the following.

Corollary 2.22. Let 𝑋 be a regular, proper, integral k-variety. Then

Br(𝑋) [𝑛] ≃ 𝐻2
nr(k(𝑋)∕k,μ𝑛). ◻

Since the Brauer group is a torsion group [CTS19, Proposition 1.3.6], it can
thus be computed by the unramified cohomology groups.

On the other hand, the second cohomology of μ𝑛 is a part of the cycle module
(in the sense of [Ros96])

⨁𝑖 𝐻 𝑖(−,μ⊗(𝑖−1)
𝑛 ),

which we do not give a precise definition here. This allows it to be regarded as a
“coefficient group” for Chow groups. As a result, there is an action of correspon-
dences

Corr(𝑋, 𝑌 ) ⊗ 𝐻2
nr(k(𝑋)∕k,μ𝑛) ⟶ 𝐻2

nr(k(𝑌 )∕k,μ𝑛)

for k-varieties 𝑋, 𝑌 . This action will relate the Brauer group with the decomposi-
tion of the diagonal.
Theorem 2.23. Let 𝑋 be a smooth projective k-variety. If 𝑋 admits a decomposi-
tion of the diagonal, then the natural map induces an isomorphism

Br(k) ⥲ Br(𝑋).

In particular, if k is separably closed, then Br(𝑋) = 0.
Sketch of proof. The decomposition of the diagonal implies that the identity map
and the constant map (to be precise, a sum of constant maps) induce the same action
on

𝐻2
nr(k(𝑋)∕k,μ𝑛).

But the action of a constant map factors through 𝐻2
nr(k∕k,μ𝑛), via the corestriction

map, whence the result follows. ◻

3 The deformation method

In this section, we describe the deformation method which produces irrational va-
rieties. We show that if we have a good family of varieties, and if one of them does
not have a decomposition of the diagonal, then a very general one in the family will
not have a decomposition, and hence, will not be retract rational.

This methodwas developed byC. Voisin [Voi15], andmodified by J.-L. Colliot-
Thélène and A. Pirutka [CTP16], to show that a very general quartic threefold in
P4
C is not retract rational. We will present a proof of this result.



14 Stable Irrationality of Varieties

Families of cycles

Definition 3.1 (Kollár [Kol96, Definition 3.10]). Suppose that

• k is an algebraically closed field of characteristic 0.

• 𝑆 is a k-scheme.

• 𝑋∕𝑆 is a projective 𝑆-scheme, with a chosen relatively ample line bundle.

• 𝐵∕𝑆 is a reduced normal 𝑆-scheme.

• 𝑑 and 𝑑′ are non-negative integers.

A well-defined family of 𝑑-cycles of 𝑋 of degree 𝑑′ parametrised by 𝐵 is a cycle

𝐶 = ∑𝑖 𝑚𝑖[𝐶𝑖] of 𝑋 ×𝑆 𝐵,

such that

• Each 𝐶𝑖 is an integral closed subscheme of 𝑋 ×𝑆 𝐵.

• For each 𝑖, the image of the projection map 𝑔𝑖 ∶ 𝐶𝑖 → 𝐵 is an irreducible
component of 𝐵. In particular, 𝑔𝑖 is flat over a dense open subset of 𝐵.

• Each fibre of 𝑔𝑖 defines a 𝑑-cycle of 𝑋 of degree 𝑑′. This means that the
fibre is either empty or of dimension 𝑑, and that 𝑔𝑖 is flat over a dense open
subset of 𝐵.

The deep theorem below shows the existence of a universal family of cycles, in
that every family of cycles is realised as its pullback.

Theorem 3.2. Under the assumptions of Definition 3.1, for an 𝑆-scheme 𝑍, define

Chow𝑑,𝑑′

𝑋∕𝑆 (𝑍) = {
well-defined families of non-negative 𝑑-cycles

of 𝑋 of degree 𝑑′ parametrised by 𝑍 }.

Then

• Chow𝑑,𝑑′

𝑋∕𝑆 is a contravariant functor from the semi-normal𝑆-schemes to sets.

• Moreover, this functor is represented by a projective semi-normal 𝑆-scheme
Chow𝑑,𝑑′

𝑋∕𝑆 , called the Chow scheme, so that there exists a universal well-
defined family of non-negative 𝑑-cycles

Univ𝑑,𝑑′

𝑋∕𝑆 of 𝑋 parametrised by Chow𝑑,𝑑′

𝑋∕𝑆 ,

such that every other family of cycles is its pullback.

See [Kol96, Theorem I.3.21].
We also recall the existence of Hilbert schemes.
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Theorem 3.3. Let 𝑆 be a locally noetherian scheme. Let 𝑋 → 𝑆 be a projective
morphism. For an 𝑆-scheme 𝑍, define

Hilb𝑑,𝑑′

𝑋∕𝑆 (𝑍) = {
closed subschemes of 𝑋 ×𝑆 𝑍 flat over 𝑍

of relative dimension 𝑑 and relative degree 𝑑′ }.

The functor Hilb𝑑,𝑑′

𝑋∕𝑆 is represented by an 𝑆-scheme Hilb𝑑,𝑑′

𝑋∕𝑆 , called the Hilbert
scheme, whose irreducible components are projective over 𝑆. As a result, there
exists a universal family of subschemes

𝑈 ⊂ 𝑋 ×𝑆 Hilb
𝑑,𝑑′

𝑋∕𝑆 ,

such that every other family of subschemes is its pullback.

Below, we will write

Chow𝑋∕𝑆 = ∐
𝑑,𝑑′

Chow𝑑,𝑑′
𝑋∕𝑆 and Hilb𝑋∕𝑆 = ∐

𝑑,𝑑′
Hilb𝑑,𝑑′

𝑋∕𝑆 .

Locus of rational equivalence

Situation 3.4. Suppose

• k is an algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.

• 𝑋 → 𝐵 is a projective morphism.

Lemma 3.5. In Situation 3.4, for any non-negative integer 𝑑, there exists

• A countable family of normal, irreducible, quasi-projective 𝐵-schemes {𝑇𝑖}.

• For each index 𝑖, a family of smooth (𝑑 + 1)-dimensional varieties 𝑊𝑖 → 𝑇𝑖,
with two families of divisors 𝐸𝑖,1, 𝐸𝑖,2 → 𝑇𝑖 of 𝑊𝑖,

such that

• For any 𝑏 ∈ 𝐵 and any subvariety 𝑉 ⊂ 𝑋𝑏 of dimension 𝑑 + 1, there exists
a desingularisation 𝑉 , such that for any two effective divisors 𝐷1, 𝐷2 of 𝑉 ,
such that 𝐷1 − 𝐷2 is principal, there exists 𝑖 and 𝑡 ∈ (𝑇𝑖)𝑏(k), such that the
data (𝑉 , 𝐷1, 𝐷2) is identical to ((𝑊𝑖)𝑡, (𝐸𝑖,1)𝑡, (𝐸𝑖,2)𝑡).

The reason to consider a desingularisation of 𝑉 , instead of 𝑉 itself, is that on a
smooth variety, a Weil divisor is the same thing as a Cartier divisor, and the Weil
divisor class group is the same as the Picard group. The normality of 𝑇𝑖 is required
in order to (later) satisfy the definition of a well-defined family of cycles.
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Proof. By [EGA-IV3, Theorem 9.7.7], the set of points in the Hilbert scheme
Hilb𝑑+1

𝑋∕𝐵 corresponding to the geometrically integral subvarieties is locally con-
structible. Let 𝐺 be an irreducible component of this set, equipped with the re-
duced scheme structure. Then 𝐺 is quasi-projective over 𝑆, as the components of
Hilb𝑑+1

𝑋∕𝐵 are projective. Let
𝑊 ⊂ 𝐺 ×𝐵 𝑋

be the universal family of (𝑑+1)-dimensional subschemes. Themorphism𝑊 → 𝐺
is thus projective, flat, with geometrically integral fibres.

The generic fibre 𝑊k(𝐺) is integral, as its irreducible components correspond
to irreducible components of a general fibre. By Hironaka’s theorem, let 𝑊k(𝐺) →
𝑊k(𝐺) be a desingularisation map. This map extends to a map

𝑊1 → 𝑊1

of schemes over an open set 𝐺1 ⊂ 𝐺, where 𝑊1 = 𝑊 |𝐺1 . Shrinking 𝐺1 if neces-
sary, we can assume that for any 𝑡 ∈ 𝐺1(k), the map 𝑊1,𝑡 → 𝑊𝑡 of fibres over 𝑡 is
a desingularisation map.

By noetherian induction, we can find a decomposition

𝐺 = ⋃𝑚
𝑗=1 𝐺𝑗 ,

with 𝐺𝑗 locally closed in 𝐺, together with maps 𝑊𝑗 → 𝑊𝑗 over 𝐺𝑗 , where 𝑊𝑗 =
𝑊 |𝐺𝑗 , such that for all 𝑡 ∈ 𝐺𝑗 , the map 𝑊𝑗,𝑡 → 𝑊𝑡 is a desingularisation map.

Let 𝐺𝑗 → 𝐺𝑗 be a desingularisation, and we still denote by 𝑊𝑗 → 𝐺𝑗 the
pullback of the family 𝑊𝑗 → 𝐺𝑗 .

Since 𝑊𝑗 is projective and flat over 𝐺𝑗 , with geometrically integral fibres, there
exist the schemes with a morphism

Ab∶ Div𝑊𝑗 ∕𝐺𝑗
→ Pic𝑊𝑗 ∕𝐺𝑗

,

where Div𝑊𝑗 ∕𝐺𝑗
is the scheme parametrising the effective Cartier divisors [FAG,

Theorem 9.3.7], which is quasi-projective over 𝐺𝑗 , and hence over 𝐵, and Pic𝑊𝑗 ∕𝐺𝑗
is the Picard scheme [FAG, Theorem 9.4.8]. Let

Δ𝑗 ⊂ Div𝑊𝑗 ∕𝐺𝑗
× Div𝑊𝑗 ∕𝐺𝑗

be the inverse image of the diagonal of Pic𝑊𝑗 ∕𝐺𝑗
× Pic𝑊𝑗 ∕𝐺𝑗

, under the map Ab ×
Ab, equipped with the reduced scheme structure. Let 𝑇 be one of its irreducible
components, and let 𝑇 be the normalisation of 𝑇 . Thus 𝑇 is quasi-projective over
𝐵.

The family of all the schemes 𝑇 , together with the two universal families of
divisors given by the Div schemes, satisfies the requirement of the lemma. ◻
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Of course, a rational equivalence of two 𝑑-cycles may involve more than one
(𝑑 + 1)-dimensional subvariety. The next lemma deals with this situation.

For simplicity, if 𝑉 ⊂ 𝑋𝑏 is a subvariety, we will say “the desingularisation”
of 𝑉 when we refer to the variety 𝑉 given by the previous lemma, and we simply
add a tilde to indicate this desingularisation.

Lemma 3.6. In Situation 3.4, for any non-negative integer 𝑑, there exists

• A countable family of normal irreducible 𝐵-schemes {𝐻𝑖}.

• For each index 𝑖, an integer 𝑛𝑖 ≥ 1, and 𝑛𝑖 triples (𝑊𝑖,𝑗 , 𝐸𝑖,𝑗,1, 𝐸𝑖,𝑗,2)𝑛𝑖
𝑗=1,

where for each 𝑗, 𝑊𝑖,𝑗 → 𝐻𝑖 is a smooth projective family of (𝑑 + 1)-
dimensional varieties, and 𝐸𝑖,𝑗,1, 𝐸𝑖,𝑗,2 → 𝐻𝑖 are two families of divisors
of 𝑊𝑖,𝑗 ,

such that

• For any 𝑏 ∈ 𝐵(k), and any data (𝑉𝑗 , 𝐷𝑗,1, 𝐷𝑗,2)𝑛
𝑗=1, where each 𝑉𝑗 is an

integral subscheme of 𝑋𝑏 of dimension 𝑑 +1, and 𝐷𝑗,1, 𝐷𝑗,2 are two effective
Weil divisors on the desingularisation 𝑉𝑗 of 𝑉𝑗 , such that 𝐷𝑗,1 − 𝐷𝑗,2 is a
principal divisor on 𝑉𝑗 , there exists 𝑖 and 𝑡 ∈ (𝐻𝑖)𝑏(k), such that the fibre
((𝑊𝑖)𝑡, (𝐸𝑖,𝑗,1)𝑡, (𝐸𝑖,𝑗,2)𝑡) is identical to the given data.

Proof. For each 𝑛-tuple (𝑇1, … , 𝑇𝑛) as given by the previous lemma, we consider
the normalisation𝐻 of the product 𝑇1×⋯×𝑇𝑛, equippedwith the data of 𝑛 triples as
given by the previous lemma. The collection of all such 𝐻 satisfies the requirement
of this lemma. ◻

Our effort to parametrise all possibilities for a rational equivalence allows us to
prove the following result.

Lemma 3.7. In Situation 3.4, let

𝑍1, 𝑍2 ∈ Chow𝑑
𝑋∕𝐵(𝐵)

be two well-defined families of cycles. Then there exists

• A countable family of quasi-projective 𝐵-schemes {𝑀𝑖}.

• For each index 𝑖, the data (𝑊𝑖,𝑗 , 𝐸𝑖,𝑗,1, 𝐸𝑖,𝑗,2)𝑛𝑖
𝑗=1 as in Lemma 3.6, with 𝑀𝑖

in place of 𝐻𝑖,

such that

• The union of the images of 𝑀𝑖(k) in 𝐵(k) is exactly the set

{𝑏 ∈ 𝐵(k) ∣ [𝑍1,𝑏] = [𝑍2,𝑏] in CH•(𝑋𝑏)}.
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• For any 𝑏 ∈ 𝐵(k), and any data (𝑉𝑖, 𝐷𝑖,1, 𝐷𝑖,2)𝑛
𝑖=1 as in Lemma 3.6, such

that
𝑍1,𝑏 + ∑𝑛

𝑖=1[𝐷𝑖,1] = 𝑍2,𝑏 + ∑𝑛
𝑖=1[𝐷𝑖,2] in Z•(𝑋𝑏),

there exists 𝑖 and a point 𝑡 ∈ (𝑀𝑖)𝑏(k), such that the fibre ((𝑊𝑖)𝑡, (𝐸𝑖,𝑗,1)𝑡,
(𝐸𝑖,𝑗,2)𝑡) is identical to the given data.

Proof. Let {𝐻𝑖} be the family in Lemma 3.6. We define a morphism

𝑓 ∶ 𝐻𝑖 → Chow𝑋∕𝐵 × Chow𝑋∕𝐵 ,

𝑡 ↦ (𝑍1 + ∑𝑛𝑖
𝑗=1(𝐸𝑖,𝑗,1)𝑡, 𝑍2 + ∑𝑛𝑖

𝑗=1(𝐸𝑖,𝑗,2)𝑡),

where (𝐸𝑖,𝑗,1 or 2)𝑡 is regarded as a cycle of 𝑋 via the pushforward along the desin-
gularisation map (onto a closed subvariety of 𝑋). Now let 𝑀𝑖 be the inverse image
of the diagonal along 𝑓 , with the reduced scheme structure, equipped with the data
of 𝑛𝑖 triples given by that of 𝐻𝑖. This proves the second statement.

For the first statement, write 𝑍 = 𝑍1 − 𝑍2. Let 𝑏 ∈ 𝐵 be a point where 𝑍𝑏
is rationally equivalent to zero. Then, there exist subvarieties 𝑉𝑗 ⊂ 𝑋𝑏, where
𝑗 = 1, … , 𝑛, and rational functions 𝑔𝑗 on 𝑉𝑗 , which give rise to rational functions
𝑔𝑗 on a desingularisation 𝑉𝑗 , such that

𝑍𝑏 = ∑𝑛
𝑗=1(𝑓𝑗)∗(div 𝑔𝑗),

where 𝑓𝑗 denotes the map 𝑉𝑗 → 𝑋𝑏. Conversely, the existence of this data implies
that 𝑍𝑏 is rationally equivalent to zero, since 𝑀𝑗 is taken to be the inverse image
of the diagonal. Therefore, the locus where 𝑍𝑏 is equivalent to zero is exactly the
union of the images of the 𝑀𝑖. ◻

We are now getting close to the main theorem, which states that the locus where
[𝑍1,𝑏] = [𝑍2,𝑏] is a countable union of closed sets. There is one further lemma
needed.

Lemma 3.8. Let 𝑀 be a smooth k-variety of dimension 𝑚, with k algebraically
closed, and let 𝑓 ∶ 𝑊 → 𝑀 be a flat morphism of relative dimension 𝑟. Let 𝑍 be
an 𝑛-cycle on 𝑊 . Suppose that

• There is a dense open set 𝑀 ∘ ⊂ 𝑀 , such that 𝑍|𝑓 −1(𝑀 ∘) is rationally equiv-
alent to 0 in 𝑓 −1(𝑀 ∘).

Then

• For any 𝑡 ∈ 𝑀(k), the fibre 𝑍𝑡 is rationally equivalent to 0 in 𝑊𝑡.

Proof. Let 𝑡 ∈ 𝑀(k) ⧵ 𝑀 ∘(k) be a point. As in the proof of Lemma 2.9, we can
find a curve 𝐶 in 𝑀 , passing through 𝑡, and not contained in 𝑀 ⧵ 𝑀 ∘. Taking the
normalisation of this curve, we may thus assume that 𝑀 is a smooth curve.
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Let 𝐷 = 𝑀 ⧵ 𝑀 ∘, which is now a finite set. There is an exact sequence [Ful98,
§1.8]

CH𝑛(𝑓 −1(𝐷))
𝑖∗⟶ CH𝑛(𝑊 ) ⟶ CH𝑛(𝑓 −1(𝑀 ∘)) → 0,

so that 𝑍 = 𝑖∗(𝑧) for some 𝑧 ∈ CH𝑛(𝑓 −1(𝐷)), where 𝑖∶ 𝑓 −1(𝐷) → 𝑊 denotes
the inclusion. But by the projection formula [Ful98, §2.3], the intersection of 𝑖∗(𝑧)
with the divisor 𝑓 −1(𝐷) of 𝑊 is 𝑖∗𝑖∗(𝑓 −1(𝐷) ⋅ 𝑧) = 0, so that 𝑍𝑡 is rationally
equivalent to 0 for any 𝑡 ∈ 𝐷. ◻

Nowwe are ready to prove the main result, and our proof follows that of [Voi15,
Proposition 2.4].

Theorem 3.9 (Voisin). In Situation 3.4, let

𝑍1, 𝑍2 ∈ Chow𝑑
𝑋∕𝐵(𝐵)

be two well-defined families of cycles. Then there exists a countable family {𝐵𝑖} of
closed subschemes of 𝐵, such that

{ 𝑏 ∈ 𝐵(k) | [𝑍1,𝑏] = [𝑍2,𝑏] in CH𝑑(𝑋𝑏) } = ⋃𝑖 𝐵𝑖(k).

Proof. Let {𝑀𝑖} be as in Lemma 3.7. Replacing each 𝑀𝑖 by its desingularisation,
we can assume that all 𝑀𝑖 are smooth.

Let 𝐵𝑖 ⊂ 𝐵 be the closure of the image of 𝑀𝑖 in 𝐵, as a closed integral sub-
variety. By Lemma 3.7, the equation [𝑍1,𝑏] = [𝑍2,𝑏] implies 𝑏 ∈ 𝐵𝑖 for some 𝑖.
Thus, it suffices to show that it holds for all 𝑏 ∈ 𝐵𝑖.

Let 𝐵∘
𝑖 ⊂ 𝐵𝑖 be an open subset contained in the image of 𝑀𝑖, and let 𝑀 ∘

𝑖 be
the inverse image of 𝐵∘

𝑖 in 𝑀𝑖. Let 𝑋𝑀𝑖 = 𝑋 ×𝐵 𝑀𝑖, and 𝑍𝑖 the pullback of
𝑍 = 𝑍1 − 𝑍2 along the morphism 𝑋𝑀𝑖 → 𝑋, which is actually the Chow pullback
of families of cycles along the map 𝑀𝑖 → 𝐵. Then 𝑍𝑖 is equal to the universal
cycle∑𝑛𝑖

𝑗=1(𝐸𝑖,𝑗,1 − 𝐸𝑖,𝑗,2) on 𝑀𝑖, and hence is rationally equivalent to zero.
By taking the closure in a projective bundle, the morphism 𝑀𝑖 → 𝐵𝑖 extends

to a projective morphism 𝑀𝑖 → 𝐵𝑖. Again, taking a desingularisation, we may
assume 𝑀𝑖 is smooth. Write 𝑋𝑀𝑖 = 𝑋 ×𝐵 𝑀𝑖. Now apply Lemma 3.8 with
𝑀 = 𝑀𝑖, 𝑊 = 𝑋𝑀𝑖 , and 𝑀 ∘ the inverse image of 𝑀 ∘

𝑖 . This shows that for all
𝑏 ∈ 𝐵𝑖, the cycle 𝑍𝑏 is equivalent to zero. ◻

Locus of decomposability of the diagonal

Lemma 3.10. Suppose

• k is an algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.

• 𝑋 → 𝐵 is a projective morphism, and write 𝑌 = 𝑋 ×𝐵 𝑋.

Then there exists
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• A countable family of smooth irreducible 𝐵-schemes {𝐹𝑖}.

• For each index 𝑖, a well-defined family of non-negative 𝑑𝑖-cycles 𝐶𝑖 of 𝑌 of
degree 𝑑′

𝑖 , parametrised by 𝐹𝑖,

such that

• For any 𝑏 ∈ 𝐵 and any non-negative 𝑑-cycle 𝐶 of 𝑌𝑏 of degree 𝑑′, supported
in 𝑍 × 𝑋𝑏 for a codimension 1 subset 𝑍 ⊂ 𝑋𝑏, there exists 𝑖 and 𝑥 ∈ (𝐹𝑖)𝑏
such that 𝐶 = (𝐶𝑖)𝑥.

• For any 𝑥 ∈ (𝐹𝑖)𝑏, the cycle 𝐶 = (𝐶𝑖)𝑥 is supported in 𝑍 × 𝑋𝑏 for a codi-
mension 1 subset 𝑍 ⊂ 𝑋𝑏.

The condition “supported in𝑍×𝑋𝑏” is themain point of this lemma. In fact, the
proof would be a lot easier if we dropped this condition. This lemma will be used
to parametrise all possibilities for the term 𝐷 in a decomposition of the diagonal,
as in Definition 2.14.

Proof. First, we need to parametrise all the subschemes of 𝑋 that are codimension
1 in 𝑋𝑏 at each 𝑏 ∈ 𝐵. Therefore, we consider an irreducible component

𝐻 ⊂ Hilb𝑋∕𝐵 ,

parametrising the codimension 1 subschemes. Let 𝑈 ⊂ 𝐻 ×𝐵 𝑋 be the universal
subscheme. Thus if we look at the fibre at 𝑏 ∈ 𝐵, then 𝐻𝑏 parametrises the codi-
mension 1 subschemes of 𝑋𝑏, and 𝑈𝑏 ⊂ 𝐻𝑏 ×𝑋𝑏 is a subscheme whose intersection
with {𝑐} × 𝑋𝑏 gives the subscheme of 𝑋𝑏 corresponding to 𝑐.

Next, we want to parametrise all the subschemes of 𝑌 which have the form
(codim 1 subset) × 𝑋𝑏 when restricted to the fibres. This is given by the universal
subscheme

𝑈 ′ = 𝑈 ×𝐵 𝑋 ⊂ 𝐻 ×𝐵 𝑋 ×𝐵 𝑋,

which, at 𝑏 ∈ 𝐵, when intersected with {𝑐} × 𝑋𝑏 × 𝑋𝑏, gives the subscheme of
𝑋𝑏 × 𝑋𝑏 corresponding to 𝑐.

Finally, we parametrise cycles of 𝑌 supported in a subset of the form of the
previous step. Thus we consider an irreducible component

𝐶 ⊂ Chow𝑈′∕𝐻 .

Let 𝑉 ∈ Z•(𝐶 ×𝐻 𝑈 ′) be the universal family. Since

𝐶 ×𝐻 𝑈 ′ ⊂ 𝐶 ×𝐻 𝐻 ×𝐵 𝑋 ×𝐵 𝑋 ≃ 𝐶 ×𝐵 𝑋 ×𝐵 𝑋,

we can view 𝑉 as a family of cycles of 𝑌 parametrised by 𝐶 .
Thus, all choices of 𝐻 and 𝐶 will give a countable set of families, which to-

gether parametrise all the cycles of 𝑌 of the given form.
However, the parametrising schemes need to be smooth. We thus apply Hiron-

aka’s desingularisation theorem to the schemes 𝐶 . ◻
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Proposition 3.11. Suppose

• k is an algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.

• 𝑋 → 𝐵 is a projective morphism.

Then there exists a countable family {𝐵𝑖} of closed subschemes of 𝐵, such that

{𝑏 ∈ 𝐵(k) ∣ 𝑋𝑏 has a decomposition of the diagonal} = ⋃𝑖 𝐵𝑖(k).

Proof. Let 𝐹𝑖, 𝐹𝑖′ be two of the schemes as in Lemma 3.10, with 𝑑𝑖 = 𝑑𝑖′ =
dim(𝑋∕𝐵), and let 𝐶𝑖, 𝐶𝑖′ be the universal cycles, lying in 𝑋 ×𝐵 𝑋 ×𝐵 𝐹𝑖 or 𝑖′ .

Let 𝐺𝑗 , 𝐺𝑗′ be irreducible components of Chow0,𝑑
𝑋∕𝐵 and Chow0,𝑑+1

𝑋∕𝐵 , respec-
tively, where 𝑑 is arbitrary, and let 𝐷𝑗 , 𝐷𝑗′ be the universal cycles lying in 𝑋 ×𝐵
𝐺𝑗 or 𝑗′ .

We define two cycles of 𝑌 = 𝐹𝑖 ×𝐵 𝐺𝑗 ×𝐵 𝑋 ×𝐵 𝑋 ×𝐵 𝐺𝑗′ ×𝐵 𝐹𝑖′ by

𝑍1 = ([𝐺𝑗] × 𝐶𝑖 + [𝐹𝑖] × [𝐺𝑗] × [Δ𝑋∕𝐵] + [𝐹𝑖] × [𝑋] × 𝐷𝑗) × [𝐺𝑗′ ] × [𝐹𝑖′ ],

𝑍2 = [𝐹𝑖] × [𝐺𝑗] × (𝐶𝑖′ × [𝐺𝑗′ ] + [𝑋] × 𝐷𝑗′ × [𝐹𝑖′ ]),

where [Δ𝑋∕𝐵] is the diagonal class.
Now apply Theorem 3.9, where we take 𝑋 to be 𝑌 , and take 𝐵 to be

𝐹𝑖 ×𝐵 𝐹𝑖′ ×𝐵 𝐺𝑗 ×𝐵 𝐺𝑗′ .

At the point

𝑡 = (𝑡1, 𝑡2, 𝑥1, 𝑥2) ∈ (𝐹𝑖)𝑏 × (𝐹𝑖′ )𝑏 × (𝐺𝑗)𝑏 × (𝐺𝑗′ )𝑏,

the cycle𝑍1 gives [Δ𝑋𝑏 ]+𝑧1+[𝑋𝑏]×𝑥1, where 𝑧1 is a non-negative cycle supported
in 𝑍 × 𝑋𝑏 for 𝑍 ⊂ 𝑋𝑏 of codimension 1, and similarly, the cycle 𝑍2 gives [𝑋𝑏] ×
𝑥2 + 𝑧2, with 𝑧2 likewise.

Therefore, Theorem 3.9 implies that the locus where the equation

[Δ𝑋𝑏 ] + 𝑧1 + [𝑋𝑏] × 𝑥1 = [𝑋𝑏] × 𝑥2 + 𝑧2 ∈ CHdim𝑋𝑏 (𝑋𝑏 × 𝑋𝑏)

holds (for non-negative 𝑥1, 𝑥2, 𝑧1, 𝑧2) is the union of countably many closed sub-
sets. ◻

This result is restated as follows.

Theorem 3.12. Suppose

• k is an algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.
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• 𝑋 → 𝐵 is a dominant projective morphism.

• There exists a k-point 0 ∈ 𝐵, such that the fibre 𝑋0 does not have a decom-
position of the diagonal.

Then for a “very general” k-point 𝑏 ∈ 𝐵, the fibre𝑋𝑏 will not have a decomposition
of the diagonal. ◻

By “very general”, we mean “except a countable union of closed sets of codi-
mension ≥ 1”.

This means that if we can find one example in a family of varieties, which we
can show has non-trivial Brauer group, and hence does not have a decomposition
of the diagonal, then a very general variety in this family is not retract rational.

Stable equivalence

This subsection gives a variant of the above result, concerning stable equivalence
instead of retract rationality.

Definition 3.13. Two projective k-varieties are stably equivalent, if

𝑋 × P𝑚 is birational to 𝑌 × P𝑛

for some 𝑚, 𝑛 ∈ N.
Stable rationality is the same as stable equivalence to a point.

Lemma 3.14. Let 𝑋, 𝑌 be two k-varieties, such that there exist open sets 𝑈 ⊂ 𝑋,
𝑉 ⊂ 𝑌 × P𝑛, and two morphisms 𝑝∶ 𝑈 → 𝑉 , 𝑞 ∶ 𝑉 → 𝑈 , such that 𝑞 ∘ 𝑝 = id𝑈 .
Then there exist two correspondences

𝑓 ∈ Corr(𝑋, 𝑌 ), 𝑔 ∈ Corr(𝑌 , 𝑋),

such that for any field extension K∕k, the induced map

(𝑔 ∘ 𝑓)∗ ∶ CH0(𝑋K) → CH0(𝑋K)

is the identity map. When 𝑋 is smooth, we have a decomposition

[Δ𝑋] = 𝐷 + 𝑔 ∘ 𝑓 in Corr(𝑋, 𝑋),

where 𝐷 is supported in 𝑍 × 𝑋 for some closed subvariety 𝑍 ⊂ 𝑋 of codimension
at least 1.
Proof. The correspondence 𝑓 is given by the rational map

𝑋 ⊃⇢ 𝑈 𝑝→ 𝑉 ↪ 𝑌 × P𝑛 → 𝑌 ,

and 𝑔 is given by a rational map

𝑌 ↪ 𝑌 × P𝑛 ⊃⇢ 𝑉 𝑞→ 𝑈 ↪ 𝑋,



3 The deformation method 23

where the inclusion 𝑌 ↪ 𝑌 × P𝑛 is chosen so that the composition is defined. To
prove that 𝑔 ∘ 𝑓 induces the identity map on CH0(𝑋K), it suffices to prove that the
map

𝑌 × P𝑛 → 𝑌 ↪ 𝑌 × P𝑛

induces the identity map on CH0. This is because every closed point of 𝑌 × P𝑛

is sent to another point that lives in the same slice of P𝑛, and hence, is rationally
equivalent to it as a 0-cycle.

For the second part, we use an argument as in the proof of Theorem 2.18.
Namely, we change the base field to k(𝑋), to find that

𝑔k(𝑋) ∘ 𝑓k(𝑋)(𝛽) = 𝛽 in CH0(𝑋k(𝑋)),

where 𝛽 is the class of the generic point. The rest of the proof is analogous to the
proof of Theorem 2.18, (ii) ⇒ (iii). ◻

Note that the assumptions of this lemma is satisfied when 𝑋 and 𝑌 are stably
equivalent.

Using an argument as in the proof of Proposition 3.11, we obtain the following
result.

Theorem 3.15. Suppose

• k is an algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.

• 𝑋 → 𝐵 and 𝑌 → 𝐵 are two projective morphisms.

Then the set of all points 𝑏 ∈ 𝐵(k) such that there exist correspondences

𝑓 ∈ Corr(𝑋𝑏, 𝑌𝑏), 𝑔 ∈ Corr(𝑌𝑏, 𝑋𝑏),

and 𝐷 as before, such that

[Δ𝑋𝑏 ] = 𝐷 + 𝑔 ∘ 𝑓 ,

is a countable union of closed sets.

Proof. We apply Theorem 3.9, where we take 𝑋 to be

𝑋 ×𝐵 𝑋 ×𝐵 𝐹𝑖 ×𝐵 𝐹𝑖′ ×𝐵 𝐺𝑗 ×𝐵 𝐺𝑗′ ×𝐵 𝐻𝑘 ×𝐵 𝐻𝑘′ ,

where

• 𝐹𝑖, 𝐹𝑖′ are given by Lemma 3.5.

• 𝐺𝑗 ,𝐺𝑗′ , 𝐻𝑘, 𝐻𝑘′ are irreducible components ofChow𝑋×𝐵𝑌 ∕𝐵 , parametrising
the correspondences from 𝑋 to 𝑌 for 𝐺𝑗 and 𝐺𝑗′ , and from 𝑌 to 𝑋 for 𝐻𝑘,
𝐻𝑘′ .
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The rest of the proof is analogous to the proof of Proposition 3.11. ◻

Corollary 3.16. Under the assumptions of Theorem 3.15, the set of all points 𝑏 ∈
𝐵(k) such that 𝑋𝑏 is stably equivalent to 𝑌𝑏 is contained in a countable union of
closed sets. Moreover, this union does not contain any point 𝑏 ∈ 𝐵(k) such that
𝑋𝑏 is smooth and has a decomposition of the diagonal, and 𝑌𝑏 does not have a
decomposition of the diagonal

Proof. The countable union of closed sets given by Theorem 3.15 satisfies this
requirement. Indeed, for those 𝑏 ∈ 𝐵(k) such that 𝑋𝑏 and 𝑌𝑏 are stably equivalent,
Lemma 3.14 shows that 𝑏 is in this union.

To prove the last statement, let 𝑏 ∈ 𝐵(k) be such a point. We show that such
correspondences 𝑓, 𝑔 as in Theorem 3.15 do not exist between 𝑋𝑏 and 𝑌𝑏. In fact,
if they exist, then 𝑔 ∘ 𝑓 acts on CH0(𝑋) by the identity map. But since id𝑌 sends
every 0-cycle to its degree multiplied by a fixed 0-cycle of degree 1, so does the
correspondence 𝑔 ∘ 𝑓 = 𝑔 ∘ id𝑌 ∘𝑓 . Moreover, this holds over any field extension of
k. By Theorem 2.18, 𝑋 has a decomposition of the diagonal, a contradiction. ◻

In particular, if we take 𝑋 to be a constant family which is smooth, we de-
duce that every stable equivalence class in a family of varieties is contained in a
countable union of closed sets.

Corollary 3.17. Suppose

• k is an uncountable algebraically closed field of characteristic 0.

• 𝐵 is a smooth k-scheme.

• 𝑋 → 𝐵 is a dominant projective morphism, with smooth generic fibre.

• There exist two k-points 𝑏0, 𝑏1 ∈ 𝐵, such that the fibre 𝑋𝑏0 has a decompo-
sition of the diagonal, while the fibre 𝑋𝑏1 does not have a decomposition of
the diagonal.

Then there are uncountably many stable equivalence classes of varieties in this
family.

Proof. For those smooth fibres𝑋𝑏 that do not have a decomposition of the diagonal,
we apply Corollary 3.16 to the constant family 𝐵×𝑋𝑏 → 𝐵 and the family 𝑋 → 𝐵.
It follows that the set of 𝑏′ ∈ 𝐵(k) such that 𝑋𝑏 is stably equivalent to 𝑋𝑏′ is
contained in a countable union of closed sets, which can not coincide with the
whole space.

By Theorem 3.12, the locus of smooth fibres with no decomposition of the
diagonal is the complement of a countable union of closed subsets of 𝐵. Therefore,
in order to cover this locus, there must be uncountably many stable equivalence
classes of fibres of 𝑋 → 𝐵, since each of these classes is contained in a countable
union of closed sets. ◻
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4 The specialisation method

The specialisation map

The main idea of the specialisation method is to build a way to transport properties
between the generic fibre and the special fibre. We consider the following situation.

Situation 4.1. Let 𝐴 be a discrete valuation ring, with fraction fieldK and residue
field k. Let 𝒳 be an 𝐴-scheme. Suppose that

• The special fibre 𝑋s = 𝒳 ×𝐴 k is a k-variety.

• The generic fibre 𝑋 = 𝒳 ×𝐴 K is a K-variety.

After Colliot-Thélène and Pirutka [CTP16], we introduce the specialisation
map on the Chow groups.

Proposition 4.2. In Situation 4.1, there is a specialisation map

𝜎 ∶ CH0(𝑋) → CH0(𝑋s),

which preserves the degree of 0-cycles.

Proof. By [Ful98, §1.8 and §20.1], there is an exact sequence

CH1(𝑋s)
𝑖∗⟶ CH1(𝒳) 𝑗∗

⟶ CH0(𝑋) → 0,

where 𝑖, 𝑗 are the obvious inclusions. (The last term is CH0 instead of CH1, since
SpecK is a 1-dimensional point in Spec𝐴.)

By [Ful98, §2.6 and §20.1], there is a Gysin map

𝑖! ∶ CH1(𝒳) → CH0(𝑋s),

given by intersection with the divisor 𝑋s of 𝒳 . By [Ful98, Proposition 2.6 (c)],
we have 𝑖! ∘ 𝑖∗ = 0. Thus the map 𝑖! factors through the cokernel of 𝑖∗, giving the
desired map. ◻

Lemma 4.3. In Situation 4.1, suppose that 𝐴 is henselian, and 𝒳 is proper and
flat over 𝐴. Let 𝑋s

sm ⊂ 𝑋s be the open set where 𝑋s is smooth. Then every 0-cycle
of 𝑋s supported in 𝑋s

sm can be lifted along the specialisation map

𝜎 ∶ CH0(𝑋) → CH0(𝑋s)

to a 0-cycle supported in 𝑋sm.

Proof. We follow [EKW16, §4]. It is enough to lift the closed points of 𝑋s
sm.

Let 𝑥 ∈ 𝑋s
sm be a closed point, and let 𝑎1, … , 𝑎𝑛 ∈ 𝒪𝑋s,𝑥 be a regular sequence

generating the maximal ideal. Choose liftings ̄𝑎1, … , ̄𝑎𝑛 ∈ 𝒪𝒳,𝑥. Since 𝒪𝑋s,𝑥 ≃
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𝒪𝒳,𝑥∕𝜋𝒪𝒳,𝑥, where 𝜋 ∈ 𝐴 is a uniformiser, it follows that 𝜋, ̄𝑎1, … , ̄𝑎𝑛 is a reg-
ular sequence in the (𝑛 + 1)-dimensional local ring 𝒪𝒳,𝑥. Therefore, the ideal
( ̄𝑎1, … , ̄𝑎𝑛) ⊂ 𝒪𝒳,𝑥 defines a 1-dimensional subset of Spec𝒪𝒳,𝑥, whose closure
in 𝒳 is a 1-dimensional subscheme 𝑍 ⊂ 𝒳 . Then 𝑍 is flat of relative dimension 0
over 𝐴, and hence quasi-finite over 𝐴. By properness, it is finite over 𝐴. It follows
that 𝑍 ≃ Spec𝐵 for a finite 𝐴-algebra 𝐵. Since 𝐴 is henselian, 𝐵 is a product of
local rings. Therefore, the irreducible component of 𝑍 containing 𝑥 meets 𝑋s at a
single point 𝑥. The corresponding 0-cycle of 𝑋 has the desired property. ◻

Lemma 4.4. In Situation 4.1, suppose that

• 𝐴 is henselian, and 𝒳 is proper and flat over 𝐴.

• The generic fibre 𝑋 has a desingularisation 𝑝∶ 𝑋 → 𝑋, such that 𝑋 is
universally CH0-trivial.

Then every 0-cycle of 𝑋s of degree 0, supported in the open set 𝑋s
sm ⊂ 𝑋s where

𝑋s is smooth, is zero in CH0(𝑋s).

Proof. Let 𝑈 ⊂ 𝑋 be a dense open set such that 𝑝∶ 𝑝−1(𝑈) → 𝑈 is an isomor-
phism. Let 𝑥 be a 0-cycle of 𝑋s

sm of degree 0. By Lemma 4.3, 𝑥 lifts to a 0-cycle of
𝑋sm of degree 0. By the moving lemma 2.9, it is equivalent to a 0-cycle supported
in 𝑈 , which then lifts to a 0-cycle of 𝑋. This 0-cycle is equivalent to 0 in 𝑋 by
hypothesis. Therefore, applying the map

CH0(𝑋)
𝑝∗⟶ CH0(𝑋) 𝜎⟶ CH0(𝑋s),

we see that 𝑥 = 0 in CH0(𝑋s). ◻

Rationality and specialisation

The main result is that the rationality (or more precisely, universal CH0-triviality)
of the generic fibre can be specialised to the special fibre, so that once we show
that the special fibre is irrational, we know that the generic fibre is also irrational.

First, we make clear what we need to obtain universal triviality for a desingu-
larisation.

Lemma 4.5. Let 𝑓 ∶ 𝑋 → 𝑋 be a desingularisation map between two projective,
geometrically integral k-varieties. Suppose that

• 𝑋 has a 0-cycle of degree 1.

• 𝑓 is universally CH0-trivial.

• There exists an open set 𝑈 ⊂ 𝑋, with 𝑈 = 𝑓 −1(𝑈), such that 𝑓 ∶ 𝑈 → 𝑈
is an isomorphism, and for any extension 𝐹 ∕k, every 0-cycle of degree 0
supported in 𝑈𝐹 is rationally equivalent to zero in 𝑋𝐹 .

Then 𝑋 is universally CH0-trivial.



4 The specialisation method 27

Proof. Since the conditions of the lemma is preserved by a base change, we only
need to prove that degk ∶ CH0(𝑋) → Z is an isomorphism. By the first hypothesis,
this map is surjective. Thus, it suffices to show that for every 0-cycle 𝑥 of 𝑋 of
degree 0, 𝑥 is rationally equivalent to 0. But by the moving lemma 2.9, it is equiv-
alent to one supported in 𝑈 , which induces a cycle in 𝑈 , which is equivalent to 0 in
𝑋 by hypothesis. Since 𝑓 is universally CH0-trivial, 𝑥 is equivalent to 0 in 𝑋. ◻

Before the main theorem, we mention a convenient result in commutative al-
gebra.

Lemma 4.6. Let 𝐴 be a discrete valuation ring with residue field k, and let 𝐹 ∕k be
an extension. Then there exists a complete discrete valuation ring 𝐵 with residue
field 𝐹 , together with a local map 𝐴 → 𝐵 inducing the field map k → 𝐹 .

See [Bou06, Chapter IX, Appendix, §2, Corollary, and Exercise 4].

Theorem 4.7 (Colliot-Thélène and Pirutka). In Situation 4.1, suppose that

• 𝒳 is faithfully flat and proper over 𝐴, with geometrically integral fibres.

• The special fibre 𝑋s has a desingularisation 𝑓 ∶ 𝑋s → 𝑋s, such that 𝑓 is
universally CH0-trivial, and 𝑋s has a 0-cycle of degree 1.

• The generic fibre 𝑋 has a desingularisation 𝑋 → 𝑋.

Then if 𝑋 is universally CH0-trivial, so is 𝑋s.

Proof. The proof is done by putting the previous lemmas together.

• By Theorem 2.18, it suffices to show that 𝑋s
k(𝑋s) is CH0-trivial, where we

notice that k(𝑋s) ≃ k(𝑋s).

• By Lemma 4.5, it suffices to show that the open set 𝑈 = (𝑋s
k(𝑋s))sm ⊂ 𝑋s

k(𝑋s)
satisfies the third assumption of Lemma 4.5.

• By Lemma 4.4, it suffices to show that 𝑋s
k(𝑋s) can act the rôle of 𝑋s in that

lemma.

• By Lemma 4.6, we take a complete discrete valuation ring 𝐵, with residue
field k(𝑋s), and a local map 𝐴 → 𝐵 inducing the map of fields k → k(𝑋s).
Then 𝐵 is henselian. Doing a base change along the map 𝐴 → 𝐵 for every-
thing will complete the proof. ◻

There is a stronger variant of this result, which considers the geometrical
generic fibre over K, instead of over K. Before introducing the result, we need a
lemma.

Lemma 4.8. Let 𝑋 be a smooth, integral, projective k-variety. If 𝑋k is universally
CH0-trivial, then 𝑋𝐹 is universally CH0-trivial for some finite extension 𝐹 ∕k.
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Proof. By Theorem 2.18, 𝑋k has a decomposition of the diagonal

[Δ𝑋k
] = 𝐷k + [𝑋k] × 𝑥0 in CH𝑛(𝑋k ×k 𝑋k).

By Galois descent, there exists a finite extension 𝐹 ∕k over which everything in the
equation is defined, and we have

CH𝑛(𝑋k ×k 𝑋k) = colim
𝐸∕𝐹 finite

CH𝑛(𝑋𝐸 ×𝐸 𝑋𝐸).

Therefore, there exists a finite extension 𝐸 such that the equation of the decompo-
sition of the diagonal holds over 𝐸. ◻

Theorem 4.9 (Colliot-Thélène and Pirutka). In Situation 4.1, suppose that

• The residue field k is algebraically closed.

• 𝒳 is faithfully flat and proper over 𝐴, with geometrically integral fibres.

• The special fibre 𝑋s has a desingularisation 𝑓 ∶ 𝑋s → 𝑋s, such that 𝑓 is
universally CH0-trivial.

• The geometrical generic fibre 𝑋 = 𝒳 ×𝐴 K is a K-variety, with a desingu-
larisation 𝑋 → 𝑋.

Then if 𝑋 is universally CH0-trivial, so is 𝑋s.

Proof. Our plan is to find a suitable base change in order to apply Theorem 4.7.
First, we replace 𝐴 by its completion.
Let 𝐹 be a finite extension of K, on which 𝑋 is defined. In other words, there

exists a smooth variety 𝑌 over𝐹 , such that 𝑌K ≃ 𝑋, and there is a desingularisation
map 𝑌 → 𝑋𝐹 , which coincides with the map 𝑋 → 𝑋 over K.

By Lemma 4.8, we may replace 𝐹 by a finite extension of it, so we may assume
that 𝑌 is universally CH0-trivial.

Let 𝐵 be the integral closure of 𝐴 in 𝐹 . By [Ser79, Proposition I.3], 𝐵 is also a
discrete valuation ring. Since k is algebraically closed, the residue field of 𝐵 is also
k. We can thus do a base change along the map 𝐴 → 𝐵, and apply Theorem 4.7 to
complete the proof. ◻

There is an even stronger variant of this result, where instead ofK, we consider
any field containing K.

Lemma 4.10. Let 𝑋 be a projective k-variety. If 𝑋𝐹 is retract rational for some
extension 𝐹 ∕k, then the same is true for a certain finite extension 𝐹 ∕k.

Proof. In the definition of the retract rationality of 𝑋𝐹 , everything is defined over
a finitely generated extension of k. Thus we may assume 𝐹 ∕k is finitely generated.

For the same reason, the lemma is true when 𝐹 is the algebraic closure of k.
Therefore, we may assume that k is algebraically closed.
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In this case, there exists a k-variety 𝑌 such that 𝐹 is isomorphic to k(𝑌 ), and
there exist non-empty open sets 𝑈 ⊂ 𝑋 ×k 𝑌 and 𝑉 ⊂ P𝑛

𝑌 , such that 𝑈 is a retract
of 𝑉 as a 𝑌 -scheme. There exists a closed point 𝑦 ∈ 𝑌 such that the fibres 𝑈𝑦 and
𝑉𝑦 are non-empty. This proves the lemma. ◻

Theorem 4.11 (Colliot-Thélène and Pirutka). Assume that the four assumptions of
Theorem 4.9 are satisfied. Then, if 𝑋𝐹 is retract rational for a field 𝐹 containing
K, then 𝑋s is universally CH0-trivial. ◻

5 Example: Quartic threefolds

In this section, we construct an explicit example of a quartic threefold which is
unirational, but has non-trivial Brauer group. This example was originally due to
Artin and Mumford [AM72], and slightly modified in [CTP16] so that it embeds
in P4.

The example

• Let k be an algebraically closed field with char k ≠ 2.

• Let 𝐴 ⊂ P2 be a smooth conic, defined by the quadratic equation

𝛼(𝑧0, 𝑧1, 𝑧2) = 0.

• Let 𝐷1, 𝐷2 ⊂ P2 be two smooth cubics, defined by

𝛿1 = 0 and 𝛿2 = 0,

such that they each meet 𝐴 tangentially at 3 points, giving six tangent points
𝑄1, … , 𝑄6, and such that 𝐷1 ∩ 𝐷2 is nine distinct points 𝑃1, … , 𝑃9. These
nine points do not lie on 𝐴, since otherwise 𝐷1 and 𝐷2 will meet tangentially
at that point.

• Let 𝐵 ⊂ P2 be a cubic that intersects 𝐴 in the six points 𝑄1, … , 𝑄6. In fact,
for any nine given points on the plane, there exists a cubic curve passing
through all of them. We use these six points, and choose three other points
which are non-collinear and not on 𝐴. This ensures that the cubic does not
contain 𝐴, and can only intersect 𝐴 in these six points.
As cycles of 𝐴, we have

(𝐷1 + 𝐷2) ⋅ 𝐴 = 2𝐵 ⋅ 𝐴.

This means that 𝛼 ∣ 𝛿1𝛿2 − 𝛽2, where 𝛽 is the polynomial defining 𝐵. Thus
we may write

𝛿1𝛿2 = 𝛽2 − 4𝛼𝛾

for some 𝛾 of degree 4.
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• Let 𝑆 ⊂ P3 be the quartic surface defined by

𝑔 = 𝛼(𝑧0, 𝑧1, 𝑧2) 𝑧2
3 + 𝛽(𝑧0, 𝑧1, 𝑧2) 𝑧3 + 𝛾(𝑧0, 𝑧1, 𝑧2) = 0.

Using the projection to P2 which sends (𝑧0 ∶ 𝑧1 ∶ 𝑧2 ∶ 𝑧3) to (𝑧0 ∶ 𝑧1 ∶ 𝑧2),
the surface 𝑆 ⧵ (0 ∶ 0 ∶ 0 ∶ 1) can be seen as a double cover of P2, ramified
along the curves 𝐷1 and 𝐷2.

• After applying a linear coordinate change in 𝑧0, 𝑧1, 𝑧2, we may assume

The hyperplane 𝑧0 = 0 does not contain 𝑄1, … , 𝑄6,
or any point of 𝑀 ⧵ {𝑃0}, and is not tangent to 𝐴, (5.0.1)

where
𝑀 = { 𝑔 = 0, (

𝜕𝑔
𝜕𝑧1

= 0 or 𝜕𝑔
𝜕𝑧2

= 0), 𝜕𝑔
𝜕𝑧3

= 0 },

and 𝑃0 = (0 ∶ 0 ∶ 0 ∶ 1). This is a technical assumption which we make to
avoid bad singularities.

• Now let 𝑇 ⊂ P4 be the quartic threefold defined by

𝑓 = 𝛼(𝑧0, 𝑧1, 𝑧2) 𝑧2
3 + 𝛽(𝑧0, 𝑧1, 𝑧2) 𝑧3 + 𝛾(𝑧0, 𝑧1, 𝑧2) + 𝑧2

0𝑧2
4 = 0.

It is a double cover of P3, ramified along the surface 𝑆 and the hyperplane
𝑧0 = 0.

We will see that 𝑇 has the property of being unirational but not having a de-
composition of the diagonal.

We next construct an explicit desingularisation of the threefold 𝑇 constructed
above, following [CTP16, Appendix A]. We do this in order to get a desingulari-
sation map which is universally CH0-trivial, and such that the Brauer group of the
desingularisation is non-trivial.

• We observe that the threefold 𝑇 is singular along the line

𝐿∶ 𝑧0 = 𝑧1 = 𝑧2 = 0

in P4, and outside of this line, it has ordinary quadratic singularities at the
points 𝑃1, … , 𝑃9 on the hyperplane 𝑧4 = 0.

• Let 𝑇1 → 𝑇 be the blow-up along 𝐿. Standard computation shows that the
exceptional divisor is a rational surface, and 𝑇1 is singular along a line 𝐿1
which is the inverse image of the point 𝑃 = (0 ∶ 0 ∶ 0 ∶ 0 ∶ 1).

• Let 𝑇2 → 𝑇1 be the blow-up along 𝐿1. Standard computation shows that the
exceptional divisor is a rational surface, and 𝑇2 only has ordinary quadratic
singularities, at the inverse images of the nine points 𝑃1, … , 𝑃9.
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• Finally, we blow up 𝑇2 at the nine points 𝑃1, … , 𝑃9. This gives a desin-
gularisation of 𝑇 . The exceptional divisor over the nine points are rational
surfaces, and over 𝐿, it is a union of two rational surfaces. We can thus ap-
ply Theorem 2.13 to conclude that the desingularisation map is universally
CH0-trivial.

• Artin and Mumford [AM72, §2] showed that over C, there is a smooth
projective threefold 𝑉 , birational to 𝑇 , such that the singular cohomology
𝐻3(𝑉 ,Z) contains non-trivial 2-torsion. It follows from the universal
coefficient theorem and the comparison theorem [Mil80, Theorem III.3.12,
p. 117] that the étale cohomology group 𝐻3(𝑉 ,Z2) contains non-trivial
2-torsion. By Lemma 5.4 below, Br(𝑉 ) contains non-trivial 2-torsion, and
so does Br(𝑇2) by Theorem 2.21. In particular, Br(𝑇2) ≠ 0. This shows that
𝑇 is not retract rational, by Theorem 2.23.
For general k of characteristic zero, a consequence of the smooth base change
theorem for étale cohomology [Mil80, Corollary VI.4.3, p. 231] shows that
Br(𝑇2) ≃ 𝐻2(𝑇2,Gm) contains non-trivial 2-torsion. Indeed, the cited theo-
rem shows that this holds over Q, and applying it again shows that it holds
for any algebraically closed k of characteristic zero, so that 𝑇 is not retract
rational.

In summary, we have the following result.
Theorem 5.1. Suppose that k is algebraically closed of characteristic zero. Then
the quartic threefold 𝑇 admits a desingularisation

𝑓 ∶ 𝑇 → 𝑇 ,

such that 𝑓 is universally CH0-trivial. Moreover, we have Br(𝑇 ) ≠ 0. ◻
Finally, we prove the relationship between the Brauer group and the ℓ-adic étale

cohomology group which was used above.
Lemma 5.2. Let 𝑋 be a rationally connected k-variety, with chark = 0. Then

𝐻𝑝(𝑋, 𝒪𝑋) = 0

for all 𝑝 > 0.
Proof. See [Deb03, §3.4]. ◻

Let 𝑋 be a variety over C. The exact sequence of sheaves

0 → Z → 𝒪𝑋 → 𝒪∗
𝑋 → 0

on 𝑋 (as an analytic space) induces a long exact sequence

⋯ → 𝐻1(𝑋, 𝒪𝑋) → Pic(𝑋) → 𝐻2(𝑋,Z) → 𝐻2(𝑋, 𝒪𝑋) → ⋯ .

The image of Pic(𝑋) in 𝐻2(𝑋,Z) is called the Néron–Severi group, and its rank,
denoted by 𝜌(𝑋), is called the Picard number of 𝑋.
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Lemma 5.3. Let 𝑋 be a rationally connected complex variety. Then the Picard
number 𝜌(𝑋) is equal to the Betti number 𝑏2(𝑋). ◻

We fix some notations. For an abelian group 𝐴 and a prime number ℓ, we
denote

𝐴 {ℓ} = { 𝑥 ∈ 𝐴 ∣ ℓ𝑛𝑥 = 0 for some 𝑛 },

which is naturally a Zℓ-module. Suppose 𝑀 is a Zℓ-module of cofinite type, i.e.
one has

𝑀 ≃ (Qℓ∕Zℓ)⊕𝑟 ⊕ (finite group),

then we denote by 𝑀 fin its finite part, which is the largest finite submodule of 𝑀
that is a direct summand.

Lemma 5.4. Let 𝑋 be a rationally connected complex variety, and let ℓ be a prime
number. Then

Br(𝑋) {ℓ} ≃ 𝐻3(𝑋,Zℓ(1)) {ℓ},

where the right hand side is the étale cohomology of the sheaf Zℓ(1) = ⟵lim𝑛 μℓ𝑛 ,
which may be identified with Zℓ over C.

Proof. By [Gro68, II, Theorem 3.1, p. 80], we have an exact sequence

0 → Pic(𝑋) ⊗Z Qℓ∕Zℓ ⟶ 𝐻2(𝑋,μℓ∞ ) ⟶ Br(𝑋) {ℓ} → 0.

Since the first term is a finite sum of copies of Qℓ∕Zℓ, we have

Br(𝑋) {ℓ}fin ≃ 𝐻2(𝑋,μℓ∞ )fin.

By Lemma 5.3, the “corank” of Br(𝑋) {ℓ} (i.e. number of summands Qℓ∕Zℓ) is
𝑏2 − 𝜌 = 0, so that

Br(𝑋) {ℓ}fin ≃ Br(𝑋) {ℓ}.

By [Gro68, III, (8.3), p. 144], we have an exact sequence

0 → 𝐻2(𝑋,μℓ∞ )fin ⟶ 𝐻3(𝑋,Zℓ(1)) ⟶ ⟵lim𝑛
𝐻3(𝑋,μℓ∞ ) [ℓ𝑛] → 0,

where [ℓ𝑛] indicates the subgroup of elements killed by ℓ𝑛. Since the last term is
torsion-free, we have

𝐻2(𝑋,μℓ∞ )fin ≃ 𝐻3(𝑋,Zℓ(1)) {ℓ},

whence the result follows. ◻
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Consequences

Following Colliot-Thélène and Pirutka [CTP16], we present some consequences
of the example given in the previous subsection.

The first result provides examples of smooth quartic threefolds over complex
numbers, which are not retract rational.

Theorem 5.5. Let 𝑃 → P𝑁
C be the family of all quartic hypersurfaces in P4

C. Let
𝑡 ∈ C ⧵ Q be a transcendental number. Then the set

{ 𝑧 ∈ P𝑁
C |

𝑧 has coordinates in Q(𝑡), and the hyper-
surface 𝑃𝑧 is smooth but not retract rational}

is Zariski dense in P𝑁
C .

Proof. By Theorem 5.1, there is a quartic hypersurface 𝑋 ⊂ P4
Q, with a desingu-

larisation
𝑓 ∶ 𝑋 → 𝑋

such that 𝑓 is universally CH0-trivial, and Br(𝑋) ≠ 0.
Let 𝑊 ⊂ P𝑁

Q be the closed subset corresponding to the singular hypersurfaces.
Let 𝑀 ∈ P𝑁

Q be the point corresponding to 𝑋. Choose a point 𝑀 ′ ∈ P𝑁
Q ⧵ 𝑊 , and

let
𝐿 ≃ P1

Q ⊂ P𝑁
Q

be the straight line connecting 𝑀 and 𝑀 ′, with generic point 𝜂. Then Theorem 4.9
implies that the quartic threefold 𝑋∘ defined by 𝜂, over the field Q(𝑥), is not geo-
metrically retract rational. Moreover, by Theorem 4.11, for any embedding

Q(𝑥) ↪ C,

the base change 𝑋∘
C is not retract rational, where a desingularisation of 𝑋∘ can be

obtained via Hironaka’s theorem, as is required by Theorem 4.11.
Let 𝑅 ∈ 𝐿(C) be a point whose coordinates are inQ(𝑡), but not inQ. Then the

quartic threefold 𝑃𝑅 is isomorphic to 𝑋∘
C, for some embeddingQ(𝑥) ↪ C. Indeed,

we have a diagram of pull-back squares

𝑃𝑅 𝑃 𝐿C 𝑃 Q, 𝐿 𝑋∘

SpecC 𝐿C 𝐿Q SpecQ(𝑥) ,𝑅 𝜂

where 𝑃 Q → P𝑁
Q denotes the family of all quartic hypersurfaces in P4

Q. By
the choice of 𝑅, in the diagram, the image of SpecC in 𝐿Q is the generic point
(since any other point is a Q-rational point, and cannot be 𝑅). Therefore, the
map SpecC → 𝐿Q in the diagram factors through SpecQ(𝑥), giving the desired
embedding.
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Therefore, 𝑃𝑅 is not retract rational. This shows that every line passing through
𝑀 and a point not in 𝑊 contains infinitely many points where the hypersurface is
not retract rational. This implies Zariski density. ◻

Together with results from §3, this result allows us to obtain general statements
on the irrationality of quartic threefolds over complex numbers.

Theorem 5.6 (Colliot-Thélène and Pirutka). A very general quartic hypersurface
in P4

C is not retract rational.

Proof. By Theorem 3.12, and by Theorem 5.5. ◻

Theorem 5.7. There are uncountably many stable equivalence classes in the family
of quartic hypersurfaces in P4

C.

Proof. We apply Theorem 3.17.
We have seen that the family contains a threefold with no decomposition of the

diagonal. But the (singular) hypersurface

𝑋 ∶ 𝑥0𝑥1(𝑥0 + 𝑥1)(𝑥0 − 𝑥1) = 0

has a decomposition of the diagonal. Indeed, let 𝑧 = (0 ∶ 0 ∶ 0 ∶ 0 ∶ 1) ∈ 𝑋,
and let 𝑋1, … , 𝑋4 be the irreducible components of 𝑋, each isomorphic to P3.
The diagonal class of 𝑋𝑖 × 𝑋𝑖 is rationally equivalent to [𝑋𝑖] × [𝑧], up to a minor
term 𝐷 as before. Summing over 𝑖, we see that the diagonal of 𝑋 × 𝑋 is rationally
equivalent to [𝑋] × [𝑧], up to a minor term. ◻

Remark 5.8. In these two theorems, the degree 4 can be replaced by any positive
multiple of 4, since one can consider quartic threefolds in P4 with multiplicity
𝑚 > 1, which will be a non-reduced hypersurface of degree 4𝑚. We use the fact that
the Chow group of a “non-reduced variety” is isomorphic to that of its reduction
[Ful98, Example 1.3.1].

Finally, we mention a result of Colliot-Thélène and Pirutka which provides
examples of smooth quartic hypersurfaces in P4

C, which are defined overQ, but not
retract rational over C.

Theorem 5.9. There exist smooth quartic hypersurfaces in P4
Q that are not univer-

sally CH0-trivial over any field containing Q, and hence not retract rational over
any field containing Q, and in particular, over C.

Proof. By Theorem 5.1, there is a singular quartic hypersurface 𝑋 ⊂ P4
Q, with a

desingularisation
𝑓 ∶ 𝑋 → 𝑋

such that 𝑓 is universally CH0-trivial, and Br(𝑋) {2} ≠ 0. By Lemma 5.4, we thus
have

𝐻3(𝑋,Z2) {2} ≠ 0.
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By Galois descent and by Lemma 4.8, we choose a finite extension 𝐾∕Q, over
which 𝑋, 𝑋 and 𝑓 are defined, such that 𝑓 is universally CH0-trivial.

Let 𝒪𝐾 be the ring of integers of 𝐾 . Let 𝑈 ⊂ Spec𝒪𝐾 be an open set, such that
there exists a map of 𝑈 -schemes

𝒻 ∶ 𝒳 → 𝒳,

such that it coincides with 𝑓 ∶ 𝑋 → 𝑋 over the generic point of 𝑈 . Indeed, we
define them to be cut out by the same set of equations as 𝑋 and 𝑋 in the projective
space.

Shrinking 𝑈 if necessary, we assume that 𝑈 contains no 2-adic points, and that
𝒳 is smooth over 𝑈 .

Shrinking 𝑈 again, we assume for any closed point 𝑣 ∈ 𝑈 , the map of geomet-
rical fibres

𝒻𝜅(𝑣) ∶ 𝒳𝜅(𝑣) → 𝒳𝜅(𝑣)

is a desingularisation map which is universally CH0-trivial. In fact, it is what we
get if we start with k = 𝜅(𝑣) in §5.

Applying the smooth specialisation property of étale cohomology [Mil80,
Corollary VI.4.2, p. 230], we see that for any 𝑣 ∈ 𝑈 ,

𝐻3(𝒳𝜅(𝑣),Z2) ≃ 𝐻3(𝑋Q,Z2).

It follows that 𝐻3(𝒳𝜅(𝑣),Z2) {2} ≠ 0, and hence Br(𝒳𝜅(𝑣)) ≠ 0 by Lemma 5.4.
Fix a point 𝑣 ∈ 𝑈 . We regard 𝑣 as a discrete valuation on 𝐾 . By Lemma 4.6,

there is an extension of discrete valuation rings

𝒪𝐾,𝑣 ⊂ 𝐴,

such that the residue field of 𝐴 is 𝜅(𝑣). Let 𝐿 be the fraction field of 𝐴.
Finally, there exists a smooth 𝐴-scheme whose special fibre is 𝒳𝜅(𝑣). Indeed,

in the projective space P𝑁
𝐿 parametrising the quartic hypersurfaces in P4

𝐿, the set
of points in P𝑁

𝐿 with coordinates in 𝒪𝐿 lying over 𝒳𝜅(𝑣) is Zariski dense. But there
is an open set of P𝑁

𝐿 whose points correspond to smooth hypersurfaces.
Now we apply Theorem 4.11 to complete the proof. ◻

6 Example: Cubic threefolds

In this section, we consider a general example of a cubic hypersurface in P4, fol-
lowing [CTP16].

• Let 𝑝 ≠ 3 be a prime number.

• Consider one of the following two situations.
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– Let k be either a finite extension of Q𝑝, or the field F𝑞((𝑡)), where 𝑞 is a
power of 𝑝. Let 𝐴 be its ring of integers and F the finite residue field.
Let 𝜋 ∈ 𝐴 be a uniformising element.

– Or, let k be a number field in which 𝑝 is a prime. Let 𝐴 ⊂ k be the
corresponding discrete valuation ring, and let F be the finite residue
field. Let 𝜋 = 𝑝.

• LetK∕k be a cubic extension which is unramified at 𝜋, giving a cubic exten-
sion E∕F of residue fields.

• Let 𝛼 be an element of the ring of integers of K, such that K = k(𝛼). Let
𝛽 ∈ E be its image.

• Let
Φ ∈ 𝐴[𝑢, 𝑣, 𝑤, 𝑥, 𝑦]

be a cubic homogeneous polynomial, which defines a smooth hypersurface
in P4

𝐴.

• Let 𝒳 ⊂ P4
𝐴 be the hypersurface cut out by the equation

Ψ = NormK∕k(𝑢 + 𝛼𝑣 + 𝛼2𝑤) + 𝑥𝑦(𝑥 − 𝑦) + 𝜋𝑚Φ(𝑢, 𝑣, 𝑤, 𝑥, 𝑦) = 0,

where 𝑚 > 0 is an integer that is to be chosen.

• We can choose 𝑚 so that the generic fibre

𝑋∘ = 𝒳 ×𝐴 k

is smooth over k. In fact, the discriminant [Sal76, Article 105, p. 93] of Ψ
is a polynomial in 𝜋𝑚, which is non-zero since the coefficient of its leading
term is the discriminant of Φ. Therefore there are only finitely many values
of 𝑚 for which it is zero.

• We now look at the special fibre

𝑋 = 𝒳 ×𝐴 F,

which is defined by the equation

NormE∕F(𝑢 + 𝛽𝑣 + 𝛽2𝑤) + 𝑥𝑦(𝑥 − 𝑦) = 0.

Let 𝛽1, 𝛽2, 𝛽3 be the conjugates of 𝛽. Consider the linear coordinate change
over E

(𝑢, 𝑣, 𝑤) ↦ (𝑢 + 𝛽1𝑣 + 𝛽2
1 𝑤, 𝑢 + 𝛽2𝑣 + 𝛽2

2 𝑤, 𝑢 + 𝛽3𝑣 + 𝛽2
3 𝑤). (6.0.1)

The equation is now simplified over E:

𝑢𝑣𝑤 + 𝑥𝑦(𝑥 − 𝑦) = 0.
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Geometrically, this hypersurface has three singular points

(1 ∶ 0 ∶ 0 ∶ 0 ∶ 0), (0 ∶ 1 ∶ 0 ∶ 0 ∶ 0), (0 ∶ 0 ∶ 1 ∶ 0 ∶ 0). (6.0.2)

They define a single point 𝑀 ∈ 𝑋 with residue field E.

• Let 𝑋1 be the blow-up of 𝑋 at 𝑀 . Standard computation shows that under
the map

(𝑋1)E → 𝑋E,

the inverse image of each of the 3 singular points is a union of two surfaces
P2
E, which intersect in a line P1

E, which contains 3 singular points.

• The Galois group 𝐺 = Gal(E∕F) acts on 𝑋E by permuting 𝑢, 𝑣, 𝑤 cyclically.
It follows that 𝑋1 ≃ (𝑋1)E∕𝐺, as a blow-up of 𝑋, has an exceptional divisor
which is a union of two surfaces P2

E, and contains 3 singular points with
residue field E.

• Let 𝑋2 be the blow-up of 𝑋1 at these three points. Standard computation
shows that 𝑋2 is smooth over F, and that the exceptional divisor over each
point is a rational surface.

• We conclude by Theorem 2.13 that the map

𝑋2 → 𝑋

is a desingularisation map that is universally CH0-trivial.

• We have Br(𝑋2) ≠ 0 by Theorem 6.4 below. Note that Br(F) = 0 by Wed-
derburn’s theorem, so that Br(𝑋2)∕Br(F) ≠ 0.

In summary, we have obtained the following theorem.

Theorem 6.1. Let k be one of the following:

• a number field,

• a finite extension of Q𝑝 with 𝑝 ≠ 3, or

• the field F𝑞((𝑡)) of characteristic not equal to 3.

Then there exist smooth cubic hypersurfaces in P4
k that is not universally CH0-

trivial over k, and hence not retract rational over k.

Proof. By the above construction, and by Theorem 4.7, the generic fibre 𝑋∘, as a
smooth k-variety, is not universally CH0-trivial. ◻

Now, we complete the computation of the Brauer group of 𝑋2.
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Lemma 6.2. Let K be a field, and let

𝑅 = K[𝑢, 𝑣, 𝑤]∕(𝑢𝑣𝑤 − 1).

Then an element of 𝑅 is invertible if and only if it is of the form 𝑡 𝑢𝑚𝑣𝑛, with 𝑡 ∈ K
and 𝑚, 𝑛 ∈ Z. ◻

Lemma 6.3. Let 𝑝∶ 𝑋 → 𝐵 be a morphism of smooth varieties, where 𝐵 is an
integral curve. Suppose that

• Pic(𝐵) = 0.

• The Picard group of the generic fibre of 𝑝 is zero.

• For each 𝑏 ∈ 𝐵 such that 𝑋𝑏 is not integral, every irreducible component of
𝑋𝑏 is a principal divisor of 𝑋.

Then Pic(𝑋) = 0.

Proof. Let 𝐷 ⊂ 𝑋 be an irreducible divisor, with generic point 𝜂. We want to
show that 𝐷 is principal. There are two cases.

• 𝑝(𝜂) is a closed point 𝑏 ∈ 𝐵. Then 𝐷 is an irreducible component of the
fibre 𝑋𝑏. If 𝑋𝑏 is not irreducible, the result follows from the hypotheses.
Otherwise, we have 𝐷 = 𝑋𝑏, so that the rational function on 𝐵 establishing
the divisor 𝑏 ∈ 𝐵 as principal, also establishes 𝐷 as principal.

• 𝑝(𝜂) is the generic point. Then 𝜂 defines a divisor of the generic fibre, which
is principal by hypothesis. We thus obtain a rational function on 𝑋, whose
divisor is the sum of 𝐷 and some other divisors, each being an irreducible
component of a fibre of 𝑝. We can thus apply the first case. ◻

Theorem 6.4. Using the above notation, let 𝑌 be any desingularisation of 𝑋. For
example, we may take 𝑌 = 𝑋2. Then

Br(𝑌 ) ≃ Z∕3.

Proof. As before, we consider the coordinate change (6.0.1), so that 𝑋E is defined
by the equation

𝑢𝑣𝑤 = 𝑥𝑦(𝑥 − 𝑦),

with the action of the Galois group 𝐺 = Gal(E∕F) ≃ Z∕3 by permuting the coor-
dinates 𝑢, 𝑣, 𝑤 cyclically.

Let 𝑈 ⊂ 𝑋 be the smooth locus, so that 𝑈E ⊂ 𝑋E is the complement of the
three singular points (6.0.2).

Let 𝑉 ⊂ 𝑈 be the open set given by 𝑥𝑦 ≠ 0. Then 𝑈E ⧵ 𝑉E consists of six
irreducible components Δ𝑢,𝑥, Δ𝑣,𝑥, Δ𝑤,𝑥, Δ𝑢,𝑦, Δ𝑣,𝑦, Δ𝑤,𝑦, where for example, Δ𝑢,𝑥
is defined by 𝑢 = 𝑥 = 0. The group 𝐺 acts on them by permuting 𝑢, 𝑣, 𝑤.

Let 𝑝∶ 𝑉E → A1
E ⧵ {0} be the projection given by (𝑢, 𝑣, 𝑤, 𝑥, 𝑦) ↦ 𝑥∕𝑦. The

generic fibre is isomorphic to the surface 𝑢𝑣𝑤 = 1 in the affine space A3
E(𝑥), which
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is isomorphic to the open subset 𝑢𝑣 ≠ 0 of A2
E(𝑥), so that its Picard group is zero.

Moreover, the only non-integral fibre is the fibre at 1, which consists of three irre-
ducible components, each being a principal divisor of 𝑉E, since they are defined in
𝑉E by the equations 𝑢 = 0, 𝑣 = 0 and 𝑤 = 0 respectively. Applying Lemma 6.3,
we obtain Pic(𝑉E) = 0.

Let Div𝑈E⧵𝑉E (𝑈E) denote the group of divisors of 𝑈E supported in 𝑈E ⧵ 𝑉E. It
is a free abelian group of rank 6, generated by the divisors Δ𝑢,𝑥, etc. The canonical
map

𝛽 ∶ Div𝑈E⧵𝑉E (𝑈E) → Pic(𝑈E)

is surjective, as its image is the kernel of the restrictionmap Pic(𝑈E) → Pic(𝑉E), the
latter group being zero. The kernel of 𝛽 consists of those divisors that are principal
in 𝑈E. We thus have an exact sequence of 𝐺-modules

0 → E[𝑉E]×∕E[𝑈E]× 𝛼⟶ Div𝑈E⧵𝑉E (𝑈E) 𝛽⟶ Pic(𝑈E) → 0. (6.4.1)

Let us take a closer look at the first term. Suppose 𝑓 ∈ E[𝑉E]×. Using the
projection 𝑝∶ 𝑉E → A1

E ⧵ {0} mentioned above, we can apply Lemma 6.2 to K =
E(𝑥), to conclude that 𝑓 has the form 𝑓 = 𝑡(𝑥∕𝑦) 𝑢𝑚 𝑣𝑛, for 𝑡 a rational function,
and 𝑚, 𝑛 ∈ Z. Since 𝑓 has to be invertible on 𝑉E, we must have 𝑚 = 𝑛 = 0, and
𝑡(𝑥∕𝑦) = 𝑐 (𝑥∕𝑦)𝑘 for some 𝑐 ∈ E× and 𝑘 ∈ Z. It follows that E[𝑉E]× ≃ E× ⊕ Z
and E[𝑈E]× ≃ E×. The sequence (6.4.1) is thus

0 → Z 𝛼⟶ Z[𝐺] ⊕ Z[𝐺] 𝛽⟶ Pic(𝑈E) → 0,

and the map 𝛼 sends 𝑘 ∈ Z to the divisor of the function (𝑥∕𝑦)𝑘, which is the
element (𝑘𝜀, −𝑘𝜀) ∈ Z[𝐺] ⊕ Z[𝐺], where 𝜀 = ∑𝑔∈𝐺 𝑔 ∈ Z[𝐺].

Now is where the proof really begins. The exact sequence (6.4.1) will not be
used anywhere in this proof; what we use is the sequence (6.4.1) with 𝑌 in place of
𝑈 , where 𝑌 is a desingularisation of 𝑋 as in the statement of this theorem. Such
a sequence is obtained by a process as in the above argument. This gives an exact
sequence of Tate cohomology groups

0 → �̂�−1(𝐺, Pic(𝑌E)) 𝛿⟶ �̂�0(𝐺,

≃Z

⏞⏞⏞⏞⏞⏞⏞E[𝑉E]×∕E×) ≃ Z∕3
𝛼′

⟶ �̂�0(𝐺,Div𝑌E⧵𝑉E (𝑌E)) → ⋯ ,

where the �̂�−1 of Div𝑌E⧵𝑉E (𝑌E) vanishes, since the latter is a direct sum of copies
of Z[𝐺] and Z, which both have zero �̂�−1 by direct computation.

The generator 𝑥∕𝑦 of the second non-zero term goes to a divisor of 𝑌E which is
the norm (in the 𝐺-module sense) of a divisor of 𝑌E. Indeed, we have seen that the
divisor of the rational function 𝑥∕𝑦 on 𝑈E is the norm of an element. But 𝑌E⧵𝑈E is
the inverse image of the three singular points of 𝑋E, and the action of 𝐺 permutes
these three parts of 𝑌E ⧵ 𝑈E. Therefore, the divisor of 𝑥∕𝑦 on 𝑌E ⧵ 𝑈E is the norm
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of the divisor of 𝑥∕𝑦 on one of these three parts. This shows that 𝛼′(𝑥∕𝑦) = 0, so
that 𝑥∕𝑦 is in the image of 𝛿. It follows that �̂�−1(𝐺,Pic(𝑌E)) ≃ Z∕3.

By [CTS77, Lemma 15], there is a short exact sequence

0 → Br(F,E) ⟶ Br(𝑌 ,E) ⟶ 𝐻1(𝐺,Pic(𝑌E)) → 0,

where Br(𝑌 ,E) = ker(Br(𝑌 ) → Br(𝑌E)), and similarly for Br(F,E). Since F and E
are finite, one has Br(F,E) = 0 by Wedderburn’s theorem. Since 𝐺 is cyclic, one
has 𝐻1(𝐺, Pic(𝑌E)) ≃ �̂�−1(𝐺,Pic(𝑌E)) ≃ Z∕3. It follows that the middle term is
Z∕3. In other words, there is a short exact sequence

0 → Z∕3 ⟶ Br(𝑌 ) ⟶ Br(𝑌E) → 0.

Recall the projection 𝑝∶ 𝑉E → A1
E defined above. We have seen that the inverse

image of the complement of {0, 1} is isomorphic to the subset of A3
E defined by

𝑢𝑣𝑥(𝑥 − 1) ≠ 0. This shows that 𝑌E is rational, so that Br(𝑌E) ≃ Br(E) ≃ 0 by
Theorem 2.23 and Wedderburn’s theorem. Therefore, Br(𝑌 ) ≃ Z∕3. ◻

7 Example: Quadric surface bundles

This section presents the result of Hassett, Pirutka and Tschinkel [HPT16], which
states that over complex numbers, a very general fourfold which is a quadric surface
bundle over P2 is not retract rational, while those fourfolds that are rational are
dense in the family, in euclidean topology.

Definition 7.1. Let 𝑆 be an integral surface. A quadric surface bundle over 𝑆, is
a fourfold 𝑋 ⊂ 𝑆 × P3, such that the composition

𝜋 ∶ 𝑋 ↪ 𝑆 × P3 pr1−−→ 𝑆

is flat with smooth generic fibre.

Irrationality

We are interested in the case 𝑆 = P2, and we consider the family of all hypersur-
faces of P2 × P3 of bidegree (2, 2). A general member of this family is a quadric
surface bundle over P2.

As before, we use a specific example to establish the irrationality of a very
general member.

• Consider the fourfold 𝑋 ⊂ P2 × P3, given by

𝑦𝑧𝑠2 + 𝑥𝑧𝑡2 + 𝑥𝑦𝑢2 + 𝐹 (𝑥, 𝑦, 𝑧)𝑣2 = 0,

where 𝑥, 𝑦, 𝑧 are the coordinates of P2, and 𝑠, 𝑡, 𝑢, 𝑣 the coordinates of P3,
with

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 2𝑦𝑧 − 2𝑥𝑧 − 2𝑥𝑦.
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• Hassett, Pirutka and Tschinkel [HPT16, §5] constructed a universally CH0-
trivial desingularisation of 𝑋.

Let𝐴 be a discrete valuation ring, with valuation 𝜈, fraction fieldK, and residue
field 𝜅. There is a residue map

𝜕𝜈 ∶ 𝐻2(K,Z∕2) → 𝐻1(𝜅,Z∕2) ≃ 𝜅×∕𝜅×2,

which sends
(𝑎, 𝑏) ↦ (−1)𝜈(𝑎) 𝜈(𝑏)𝑎𝜈(𝑏)∕𝑏𝜈(𝑎),

where 𝑎, 𝑏 ∈ K×, and (𝑎, 𝑏) = 𝑎 ∪ 𝑏 is the cup product of 𝑎 and 𝑏. The kernel of 𝜕𝜈
coincides with the image of 𝐻2(Spec𝐴,Z∕2), so that an element of 𝐻2(K,Z∕2)
is unramified (Definition 2.20) if and only if it is in the kernel of 𝜕𝜈 for all 𝜈. See
[CT95] for more details.
Proposition 7.2. Br(𝑋) contains non-trivial 2-torsion. In fact, let

𝛼 = (𝑥∕𝑧, 𝑦∕𝑧) ∈ Br(C(P2)) [2],

and let 𝛼′ ∈ Br(C(𝑋)) be its image. Then 𝛼′ is non-zero and unramified, i.e., lies
in Br(𝑋).
Proof. The generic fibre 𝑋∘ of 𝑋 → P2 is a quadric surface over the field K =
C(𝑥∕𝑧, 𝑦∕𝑧), and its discriminant is not a square in K. Applying [CTS19, Propo-
sition 6.2.3 (c)], the natural map

𝑖∶ Br(K) → Br(𝑋∘)

is an isomorphism. As K(𝑋∘) ≃ C(𝑋), it remains to show that 𝛼′ is unramified,
i.e., 𝜕𝜈(𝛼′) = 0 for all valuations 𝜈 on C(𝑋)∕C.

Let us first look at the residues of 𝛼. By definition, only the following residues
are non-trivial:

• 𝜕𝑥(𝛼) = 𝑦∕𝑧 ∈ C(𝑦∕𝑧)×∕C(𝑦∕𝑧)×2, along the line 𝐿𝑥 ∶ 𝑥 = 0.

• 𝜕𝑦(𝛼) = 𝑥∕𝑧 ∈ C(𝑥∕𝑧)×∕C(𝑥∕𝑧)×2, along the line 𝐿𝑦 ∶ 𝑦 = 0.

• 𝜕𝑧(𝛼) = 𝑥∕𝑦 ∈ C(𝑥∕𝑦)×∕C(𝑥∕𝑦)×2, along the line 𝐿𝑧 ∶ 𝑧 = 0.
Now let 𝜈 be a valuation on C(𝑋)∕C. We need to show that 𝜕𝜈(𝛼′) = 0.
Let 𝒪𝜈 ⊂ C(𝑋) be the valuation ring of 𝜈. If 𝒪𝜈 contains K, then 𝜕𝜈(𝛼′) = 0.

Therefore, if we consider the centre of 𝜈 in P2, there are two remaining cases.

• The centre is the generic point of a curve 𝐶 ⊂ P2. The inclusion of discrete
valuation rings 𝒪P2,𝐶 ⊂ 𝒪𝜈 induces a commutative diagram

𝛼 ∈ 𝐻2(K,Z∕2) 𝐻1(𝜅(𝐶),Z∕2)

𝛼′ ∈ 𝐻2(C(𝑋),Z∕2) 𝐻1(𝜅(𝜈),Z∕2) .

𝜕𝜈

𝜕𝜈
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It follows that if 𝐶 is different from 𝐿𝑥, 𝐿𝑦 or 𝐿𝑧, then 𝜕𝜈(𝛼′) = 0, since
𝜕𝜈(𝛼) = 0. If, for example, 𝐶 = 𝐿𝑥, then 𝜕𝜈(𝛼′) = 𝑦 in the residue field

C(𝑦, 𝑡, 𝑢)[𝑠 = √𝐹 (0, 𝑦, 1)∕𝑦] ≃ C(√𝑦, 𝑡, 𝑢),

where we have set 𝑧 = 1 and 𝑣 = 1. Therefore, 𝜕𝜈(𝛼′) is a square in the
residue field, and hence is trivial. (The key point is that 𝐹 (𝑥, 𝑦, 𝑧) is a square
modulo any one of 𝑥, 𝑦, 𝑧.)

• The centre is a closed point 𝑃 ∈ P2. There are three cases.

(i) 𝑃 ∉ 𝐿𝑥 ∪ 𝐿𝑦 ∪ 𝐿𝑧. Then 𝜈(𝑥∕𝑧) = 𝜈(𝑦∕𝑧) = 0, so that 𝜕𝜈(𝛼′) = 0.
(ii) 𝑃 lies on one of the three lines, say 𝐿𝑥. Then 𝑦∕𝑧 ≠ 0 at 𝑃 , so that

𝑦∕𝑧 is a square in the completion 𝒪P2,𝑃 , which embeds in 𝒪𝜈 , whose
fraction field is the completion C(𝑋)𝜈 . Thus 𝑦∕𝑧 is a square in C(𝑋)𝜈 ,
and 𝛼′ = 0 in 𝐻2(C(𝑋)𝜈 ,Z∕2), so that 𝜕𝜈(𝛼′) = 0.

(iii) 𝑃 lies on two of the three lines, say 𝐿𝑥 and 𝐿𝑦. As in the previous
case, 𝐹 (𝑥, 𝑦, 𝑧)∕𝑧2 is a square in the completion K̂. Applying [CTS19,
Proposition 6.2.3 (c)] to the quadric 𝑋∘

K̂
, we see that the image of 𝛼 in

𝐻2(K̂(𝑋∘),Z∕2) is zero. The natural map of fields K̂(𝑋∘) → C(𝑋)𝜈
shows that 𝛼 is zero in 𝐻2(C(𝑋)𝜈 ,Z∕2). Therefore, 𝜕𝜈(𝛼′) = 0. ◻

Applying Theorem 2.23, and applying Theorem 3.12 to the family of bidegree
(2, 2) hypersurfaces in P2 × P3, we obtain the following.

Corollary 7.3. A very general bidegree (2, 2) hypersurface in P2 ×P3 is not retract
rational. ◻

Density of the rational locus

Now, we begin to prove a remarkable fact about this example, that those rational
members in the family of quadric surface bundles over P2 is dense. This also shows
that in Theorem 3.12, “a countable union of closed sets” can not be improved to “a
closed set”.

By a multisection of 𝑋∕𝑆 degree 𝑑, we mean a family of 0-cycles of degree 𝑑,
in the sense of Definition 3.1.

Lemma 7.4. Let 𝑆 be a rational surface, and 𝑋 → 𝑆 a quadric surface bundle.
Suppose that 𝑋∕𝑆 has a multisection of odd degree. Then 𝑋 is rational.

Proof. 𝑋 is rational, if and only if the generic fibre 𝑋∘ is rational over the field
C(𝑆). Since 𝑋∘ is a smooth quadric surface, it is rational if and only if it has a
rational point, as the projection from a rational point will give a birational map
between 𝑋∘ and P2. Thus it suffices to show that 𝑋∘ has a C(𝑆)-rational point.

By a theorem of Springer [Spr52], 𝑋∘ has a C(𝑆)-rational point, if and only
if 𝑋∘ has a K-rational point for some extension K∕C(𝑆) of odd degree. Thus, we
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only need to show that 𝑋∘ has a 0-cycle of odd degree, which will imply that 𝑋∘

has a closed point of odd degree.
But by hypothesis, 𝑋∕𝑆 has a multisection of odd degree, which gives rise to

a 0-cycle of 𝑋∘ of odd degree. ◻

For a quadric surface bundle 𝑋 → 𝑆, and an integral (2, 2)-class, that is, an
element 𝛼 ∈ 𝐻2,2(𝑋) ∩ 𝐻4(𝑋;Z), we say that 𝛼 meets the fibre 𝑋𝑠 in degree 𝑑,
where 𝑠 ∈ 𝑆, if the pairing of 𝛼 with the homology class of 𝑋𝑠 equals 𝑑.

Lemma7.5. Let𝑆 be a rational surface, and 𝜋 ∶ 𝑋 → 𝑆 a quadric surface bundle.
Suppose that 𝑋 has an integral (2, 2)-class meeting the fibres of 𝜋 in odd degree.
Then 𝑋 is rational.

Proof. Let 𝑆0 ⊂ 𝑆 be the locus where the rank of the quadratic form is ≥ 3 (the
full rank is 4), and let 𝑋0 = 𝑋 ×𝑆 𝑆0.

Let 𝐹1 → 𝑆 be the relative variety of lines of 𝜋, i.e., the points of the fibre (𝐹1)𝑠
correspond to straight lines contained in the fibre 𝑋𝑠. When 𝑋𝑠 is non-degenerate,
it contains 2 families of lines, each parametrised by P1. When the rank of the
quadratic form drops by 1, 𝑋𝑠 becomes a quadric cone, which contains 1 family of
lines parametrised by P1.

This shows that 𝐹1|𝑆0 → 𝑆0 factors as

𝐹1|𝑆0

𝑝⟶ 𝑇0 ⟶ 𝑆0,

where 𝑝 is an étale P1-bundle, and 𝑇0 → 𝑆0 is a double cover branched along
𝑆0 ∩ 𝐷, where 𝐷 ⊂ P2 is the locus of degenerate fibres.

Let 𝐹 be a desingularisation of the closure of 𝐹1|𝑆0 in 𝐹1. The correspondence
Γ1 = {(𝑥, ℓ) ∣ 𝑥 ∈ ℓ} ⊂ 𝑋 ×𝑆 𝐹1 induces a correspondence Γ from 𝑋 to 𝐹 , which
induces a map

Γ∗ ∶ 𝐻2,2(𝑋) → 𝐻1,1(𝐹 ).

On the other hand, let 𝜂 be the generic point of 𝑆. There is a map

Ξ∗ ∶ Pic(𝐹𝜂) ≃ CH0(𝐹𝜂) → CH0(𝑋𝜂)

constructed as follows. For a divisor 𝑍 ⊂ 𝐹𝜂 , i.e. a choice of 𝑛 lines from each
family of lines on each quadric surface, let Ξ∗(𝑍) ⊂ 𝑋𝜂 be the 𝑛2 points where
these lines intersect. Note that Ξ∗ sends a divisor of odd degree on each geometric
component of 𝐹𝜂 to a multisection of odd degree.

Now let us prove the lemma. By hypothesis, 𝑋 has an integral (2, 2)-class meet-
ing the fibres in odd degree. Applying the map Γ∗, we obtain an integral (1, 1)-class
of𝐹 of meeting the fibres in odd degree. By the Lefschetz theorem on (1, 1)-classes
[GH94, p. 163], 𝐹 has a divisor which meets the fibres in odd degree. Finally, ap-
plying the map Ξ∗ to this divisor, we obtain a multisection of 𝑋∕𝑆 which meets
the fibres in odd degree. Applying Lemma 7.4 completes the proof. ◻
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Next, we analyse the Hodge classes in the case 𝑆 = P2, in order to verify the
assumption of this lemma. The key tool is the following technique of Voisin.

Lemma 7.6. Let 𝑌 → 𝐵 be a flat, projective family of complex varieties. Suppose
there exists 𝑏 ∈ 𝐵 and 𝜆 ∈ 𝐻𝑝,𝑝(𝑌𝑏,R), such that the infinitesimal period map

∇(𝜆)∶ 𝑇𝐵,𝑏 → 𝐻𝑝−1,𝑝+1(𝑌𝑏)

is surjective, where 𝑇𝐵,𝑏 denotes the tangent space of 𝐵 at 𝑏. Then for any open
set 𝑈 ⊂ 𝐵 (in euclidean topology) containing 𝑏, such that 𝑌 |𝑈 → 𝑈 is a trivial
bundle, the map (notations are explained below)

𝜙∶ ℋ 𝑝,𝑝
R |𝑈 ↪ ℋ 2𝑝

R |𝑈 ≃ 𝐻2𝑝(𝑌𝑏,R) × 𝑈 → 𝐻2𝑝(𝑌𝑏,R) → 𝐹 𝑝−1𝐻2𝑝(𝑌𝑏,R)

is submersive at 𝜆.

We use the notation ℋ 𝑝,𝑞 , ℋ 𝑝,𝑞
R , etc., to refer to the vector bundles over 𝐵,

whose fibres are the cohomology of the fibres of 𝑌 → 𝐵. The notation 𝐹 𝑝−1𝐻2𝑝

refers to the Hodge filtration, and in this case, it is equal to 𝐻𝑝−1,𝑝+1 ⊕𝐻𝑝,𝑝 ⊕⋯⊕
𝐻2𝑝,0.

Proof. See, for example, [Voi07, §5.3.4]. ◻

In the following, we use the notation

𝑌 → 𝐵

for the family of all smooth bidegree (2, 2) hypersurfaces inP2×P3, and the notation
𝑌𝑏 refers to its fibres.

Proposition 7.7. The Hodge and Betti numbers of 𝑌𝑏 are given by

• 𝑏0 = 𝑏8 = 1.

• 𝑏1 = 𝑏3 = 𝑏5 = 𝑏7 = 0.

• 𝑏2 = ℎ1,1 = 𝑏6 = ℎ3,3 = 2.

• 𝑏4 = 46, ℎ0,4 = ℎ4,0 = 0, ℎ1,3 = ℎ3,1 = 3, ℎ2,2 = 40.

Proof. The Lefschetz hyperplane theorem shows that

𝑏𝑘(𝑌𝑏) = 𝑏𝑘(P2 × P3) and ℎ𝑝,𝑞(𝑌𝑏) = ℎ𝑝,𝑞(P2 × P3)

for 𝑘 < 4 and 𝑝 + 𝑞 < 4. This, together with Poincaré/Serre duality, gives the first
three items.

We compute 𝑏4 by analysing the map 𝑌𝑏 → P2. Let 𝐷 ⊂ P2 be the locus of
degenerate fibres. If 𝑌𝑏 is defined by the equation

∑2
𝑖,𝑗=0 ∑

3
𝑘,𝑙=0 𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑥𝑗𝑦𝑘𝑦𝑙 = 0,
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where the coefficients 𝑎𝑖𝑗𝑘𝑙 are assumed to be symmetric with respect to 𝑖, 𝑗 and
𝑘, 𝑙, then 𝐷 is cut out by the equation

det (∑2
𝑖,𝑗=0 𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑥𝑗)0≤𝑘≤3

0≤𝑙≤3
= 0.

Therefore, 𝐷 is an octic curve, and hence has genus 21 and Euler number −40.
Recall that for a complex variety 𝑋 and a closed subvariety 𝑍 ⊂ 𝑋, we have

an additive formula 𝜒(𝑋) = 𝜒(𝑍) + 𝜒(𝑋 ⧵ 𝑍) of Euler numbers. Hence we have

𝜒(𝑌𝑏) = 𝜒(P1 × P1) 𝜒(P2 ⧵ 𝐷) + 𝜒(quadric cone) 𝜒(𝐷)
= 4 ⋅ (3 − (−40)) + 3 ⋅ (−40) = 52,

and it follows that 𝑏4(𝑌𝑏) = 𝜒(𝑌𝑏) − 𝑏0 − 𝑏2 − 𝑏6 − 𝑏8 = 46.
To compute the remaining Hodge numbers, we apply the result of Batyrev and

Cox on hypersurfaces in toric varieties [BC94, Theorem 10.13], which implies that
the vanishing cohomology, defined by

𝐻𝑝,𝑞(𝑌𝑏)van = 𝐻𝑝,𝑞(𝑌𝑏)∕𝐻𝑝,𝑞(P2 × P3)

is given by the formula

𝐻𝑝,4−𝑝(𝑌𝑏)van ≃ Jac(𝐹 )(7−2𝑝,6−2𝑝),

where 𝐹 is the defining equation of 𝑌𝑏, and

Jac(𝐹 ) = C[𝑥, 𝑦, 𝑧; 𝑠, 𝑡, 𝑢, 𝑣]∕ℐ (𝐹 )

is the Z2-graded Jacobian ring of 𝐹 , where ℐ (𝐹 ) is the ideal generated by the
partial derivatives of 𝐹 .

Using this method, we obtain

• ℎ4,0 = dim Jac(𝐹 )(−1,−2) = 0, and hence ℎ0,4 = 0 as well.

• ℎ3,1 = dim Jac(𝐹 )(1,0) = 3, and hence ℎ1,3 = 3 as well.

• ℎ2,2 = 𝑏4 − (ℎ0,4 + ℎ1,3 + ℎ3,1 + ℎ4,0) = 40. ◻
Corollary 7.8. There exists 𝑏 ∈ 𝐵 which satisfies the assumption of Lemma 7.6,
with 𝑝 = 2.
Proof. Since 𝐵 ⊂ P(C[𝑥, 𝑦, 𝑧; 𝑠, 𝑡, 𝑢, 𝑣](2,2)), we may identify

𝑇𝐵,𝑏 ≃ C[𝑥, 𝑦, 𝑧; 𝑠, 𝑡, 𝑢, 𝑣](2,2)∕(C ⋅ 𝐹 ),

where 𝐹 is the defining equation of 𝑌𝑏. The infinitesimal period map

∇∶ 𝑇𝐵,𝑏 × 𝐻2,2(𝑌𝑏) → 𝐻1,3(𝑌𝑏)

is given by multiplication

(C[𝑥, 𝑦, 𝑧; 𝑠, 𝑡, 𝑢, 𝑣]∕(𝐹 ))(2,2) × Jac(𝐹 )(3,2) → Jac(𝐹 )(5,4),
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by [Voi07, Theorem 6.13], which applies by the identifications [BC94, Corol-
lary 10.2, Theorem 10.6, and Theorem 10.13]. We consider the fibre 𝑌𝑏 given
by

𝐹 = 𝑥2𝑠2 + 𝑦2𝑡2 + 𝑧2𝑢2 + 𝑦𝑧𝑠2 + 𝑥𝑧𝑡2 + 𝑥𝑦𝑢2 + 𝑥2𝑠𝑣 + 𝑦2𝑡𝑣 + 𝑧2𝑢𝑣 = 0.

One verifies that it is a smooth hypersurface in P2 × P3, and that Jac(𝐹 )(5,4) is
generated by the basis elements 𝑥𝑧4𝑣4, 𝑦𝑧4𝑣4 and 𝑧5𝑣4, using computer software.
Therefore, if we take 𝜆 = 𝑧3𝑣2 ∈ Jac(𝐹 )(3,2), then the map

⋅ 𝜆∶ C[𝑥, 𝑦, 𝑧; 𝑠, 𝑡, 𝑢, 𝑣](2,2) → Jac(𝐹 )(5,4)

is surjective. ◻

Theorem 7.9. The set of those 𝑏 ∈ 𝐵 such that 𝑌𝑏 has an integral (2, 2)-class
meeting the fibres of 𝑌𝑏 → P2 in odd degree is dense in 𝐵, in euclidean topology.

Proof. Instead of finding an integral class, we only need to find such a class with
the coefficient ring

𝑅 = {𝑚∕𝑛 ∣ 𝑚, 𝑛 ∈ Z, 2 ∤ 𝑛},

as we can multiply by an odd integer to turn such a class into an integral class. (We
have an obvious definition of an odd element in 𝑅.)

Let 𝑏0 ∈ 𝐵 be as in the previous corollary, and let 𝑈 ⊂ 𝐵 be an open set which
trivialises 𝑌 → 𝐵 near 𝑏0. Such a trivialisation preserves the homology classes of
the fibres of 𝑌𝑏 → P2.

We have shown that 𝐻0,4(𝑌𝑏0 ) = 0. Thus, Lemma 7.6 shows that the image of
the map

𝜙∶ ℋ 2,2
R |𝑈 → 𝐻4(𝑌𝑏0 ,R)

contains an open set. Since the image consists of those classes that are of type (2, 2)
over some 𝑏 ∈ 𝑈 , it suffices to show that the elements of 𝐻4(𝑌𝑏0 , 𝑅) that meet the
fibres of 𝑌𝑏0 → P2 in odd degree are dense in 𝐻4(𝑌𝑏0 ,R), so that one such element
lies in the image. We only need to prove this for 𝑏0 ∈ 𝐵, as the set of such 𝑏0 is
Zariski open in 𝐵.

The quadric surface bundle 𝑌𝑏0 has a constant section P2 → 𝑌𝑏0 given by 𝑠 =
𝑡 = 𝑢 = 0. This gives rise to an element 𝛼 ∈ 𝐻4(𝑌𝑏0 ,Z), which intersects the fibres
of 𝑌𝑏0 → P2 in degree 1. For any 𝛽 ∈ 𝐻4(𝑌𝑏0 , 𝑅), the class 𝛼 + 2𝛽 also intersects
the fibres of 𝑌𝑏0 → P2 in odd degree. Such classes are dense in 𝐻4(𝑌𝑏0 , 𝑅). ◻

The results are summarised as follows.

Theorem 7.10. In the family of all bidegree (2, 2) hypersurfaces in P2 ×P3, a very
general member is not retract rational, while the rational members form a dense
subset in the family, in euclidean topology. ◻
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