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ABSTRACT
We introduce a variant of the notion of a handlebody, in order to apply

handle theory to non-compact manifolds. As an application, we classify all
2-manifolds with finite topology, obtaining a new proof that ℝ2 has a unique
smooth structure.
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Convention. In this paper, the word “manifold” refers to a smooth manifold, pos-
sibly with boundary, unless otherwise mentioned. The boundary of a submanifold
is not assumed to be contained in the boundary of the ambient manifold.

1 Introduction

Handle theory is a powerful tool in differential topology. Its main idea is to use
handles as basic building blocks for manifolds, just like cells are building blocks
for CW complexes.



2 A Generalised Handle Theory

Definition 1.1. Let 0 ≤ 𝜆 ≤ 𝑛 be integers. A 𝜆-handle of dimension 𝑛 is a thick-
ened version of the 𝜆-disk:

ℎ𝜆 ∶= 𝐷𝜆 × 𝐷𝑛−𝜆.

It is an 𝑛-dimensional manifold, possibly with corners. ◃

For example, for 𝑛 = 3, the different types of handles are depicted below.

0-handle 1-handle 2-handle 3-handle

Every manifold can be obtained from 0-handles by attaching other handles. For
example, the solid torus 𝐷2 × 𝑆1 decomposes into a 0-handle and a 1-handle.

≃

𝐷2 × 𝑆1 a handlebody

0 1

A formal definition goes as follows.

Definition 1.2. A relative 𝑛-handlebody is a sequence

𝐴 = 𝑁0 ⊂ 𝑁1 ⊂ ⋯

of smooth 𝑛-manifolds, possibly with boundary, such that each 𝑁𝑖 is obtained from
𝑁𝑖−1 by attaching a 𝜆-handle:

𝑁𝑖 ≃ 𝑁𝑖−1 ∪Φ𝑖 ℎ𝜆,

where 𝜆 may vary with 𝑖, and the attaching map

Φ𝑖 ∶ 𝜕𝐷𝜆 × 𝐷𝑛−𝜆 → 𝜕𝑁𝑖−1

is a smooth embedding. We require local finiteness (see below), so that the space

𝑁 ∶= ⋃
𝑖

𝑁𝑖

is a smooth 𝑛-manifold.
By abuse of language, the pair (𝑁, 𝐴) is called a relative 𝑛-handlebody. If

𝐴 = ∅, then 𝑁 is called an 𝑛-handlebody. It is finite if the above sequence is
finite. ◃
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In this definition, local finitenessmeans that every point in 𝑁 has a neighbour-
hood that intersects with only finitely many handles. This is needed to ensure that
𝑁 is a manifold.

This definition is not completely rigorous, since attaching a handle will form
corners on the manifold, and one needs to eliminate them in each step. For details,
the reader is referred to [Wal16].

The handlebody was invented by Smale, and played a magical role in his proof
of the generalised Poincaré conjecture [Sma61].

Theorem 1.3 (Generalised Poincaré conjecture). If 𝑛 ≥ 6, then every smooth 𝑛-
manifold homotopy equivalent to the 𝑛-sphere is homeomorphic to the 𝑛-sphere.

Note that “homeomorphic” can not be improved to “diffeomorphic”, since there
exist different smooth structures on 𝑆7.

The main step of the proof was the following.

Theorem 1.4 (ℎ-cobordism theorem). Suppose 𝑀, 𝑁, 𝑊 are simply connected
compact manifolds, with dim𝑊 ≥ 6 and

𝜕𝑊 = 𝑀 ⊔ 𝑁.

If the inclusions 𝑀 ↪ 𝑊 and 𝑁 ↪ 𝑊 are homotopy equivalences, then there is
a diffeomorphism

𝑊 ≃ 𝑀 × [0, 1].

Sketch of Proof. The proof of this theorem relies on the theory of handlebodies.
We first decompose 𝑊 into handles, regarding it as obtained from 𝑀 by attaching
handles. For dimensional reasons, 𝑀 is replaced by 𝑀 × [0, 1], which is a neigh-
bourhood of 𝑀 in 𝑊 . Then we manipulate these handles using the following two
theorems. It turns out that everything can be cancelled out perfectly, leading to the
desired diffeomorphism. ◻

The two theorems that were used in the proof of the ℎ-cobordism theorem are
the following.

Theorem 1.5 (Rearrangement). Every finite handlebody can be rearranged, so that
every 𝜆-handle is attached on handles of type < 𝜆.

⟹

To be more precise, it is convenient to introduce some terminology here. (They
are invented by the author and not meant to be used elsewhere.)

Definition 1.6. Two 𝑛-handlebodies are similar if their manifolds 𝑁 are diffeo-
morphic, and for every 𝜆, they have the same number of 𝜆-handles. ◃
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For example, the two handlebodies shown in the above picture are similar.

Definition 1.7. A handlebody is good if every 𝜆-handle is attached on handles of
type < 𝜆. ◃

Thus, the rearrangement theorem can be reformulated as follows.

Theorem 1.5′ (Rearrangement). Every finite handlebody is similar to a good one.

The other theorem allows handles to cancel.

Definition 1.8. The belt of the handle 𝐷𝜆 × 𝐷𝑛−𝜆 is {0} × 𝜕𝐷𝑛−𝜆, and the cobelt
is 𝜕𝐷𝜆 × {0}. They are subsets of the boundary of the handle. ◃

Theorem 1.9 (Cancellation). Suppose that

𝑁 ∪ ℎ𝜆 ∪ ℎ𝜆+1

is a handlebody obtained from 𝑁 by attaching two handles. If the cobelt of ℎ𝜆+1

intersects the belt of ℎ𝜆 in exactly one point, then the new handlebody is diffeomor-
phic to 𝑁 .

0

1
⟹

swallow

1
2 ⟹

swallow

For the proofs of these theorems, see [Mat02] or [Mil65].

Handlebodies are ubiquitous in the following sense.

Theorem 1.10. Every manifold is diffeomorphic to a good handlebody.

Proof. [Wal16, Corollary 5.2.2]. ◻

However, some powerful tools, such as the rearrangement theorem, fail for in-
finite handlebodies. For example, consider the 2-dimensional handlebody depicted
below.
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If this handlebody were similar to a good handlebody, then infinitely many 1-
handles would be attached on the 0-handle simultaneously, so that the local finite-
ness criterion would fail. In other words, if we attach handles in that way (pictured
below), we would get a topological space that is not a manifold.

The purpose of this paper is to introduce a variant of the notion of handlebodies,
which accepts this kind of spaces as handlebodies. Wewill prove the rearrangement
and cancellation theorems for this kind of handlebodies. These results will make
handle theory more available to non-compact manifolds.

2 Weak handlebodies

Here is the definition of our new notion of a handlebody.

Definition 2.1. A weak relative 𝑛-handlebody is a finite or infinite sequence

𝐴 = 𝑁0 ⊂ 𝑁1 ⊂ ⋯

of 𝑛-manifolds, such that each 𝑁𝑖 is obtained from 𝑁𝑖−1 by attaching (finitely or
infinitely many) handles of the same type, i.e.,

𝑁𝑖 ≃ 𝑁𝑖−1 ∪Φ𝑖 (∐
𝛼

ℎ𝜆
),

where the attaching map

Φ𝑖 ∶ ∐
𝛼

(𝜕𝐷𝜆 × 𝐷𝑛−𝜆) → 𝜕𝑁𝑖−1

is required to be a closed embedding, which can be interpreted as stepwise local
finiteness. Thus the space

𝑁 ∶= ⟶lim (𝑁𝑖 ⧵ 𝜕𝑁𝑖)

is a smooth manifold without boundary. ◃

By abuse of language, we say that (𝑁, 𝐴) is a weak relative handlebody. If
𝐴 = ∅, then we say that 𝑁 is a weak handlebody.

The weak handlebody discards information about the boundary. However, this
makes no difference when we talk about manifolds without boundary.

Moreover, it becomes possible for the rearrangement theorem to be true.
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Theorem 2.2 (Rearrangement). Every weak relative handlebody is similar to a
good weak relative handlebody.

⟹

As before, two relative handlebodies are similar, if the pairs (𝑁, 𝐴) are diffeo-
morphic as pairs ofmanifolds, and for every 𝜆, they have the same number (possibly
infinite) of 𝜆-handles. A relative handlebody is good, if every 𝜆-handle is attached
on handles of type < 𝜆, or on 𝐴.

The proof will be given in §4.
The cancellation theorem is also true, with some modifications.

Theorem 2.3 (Cancellation). If a weak handlebody has a collection of pairs of
handles satisfying the condition for cancellation, then these pairs can be cancelled
simultaneously.

⟹
swallow

Precisely, cancellation means that the original handlebody is diffeomorphic to
a new handlebody, with the number of handles cut down.

A more precise formulation and the proof will be given as (4.13).

3 Preliminaries on differential topology

This section will provide preliminary results that will be needed in the proofs of
our main theorems. The reader is suggested to skip to §4 to read the proofs there,
and come back for the results when they are used.

Lemma 3.1. Let 𝑀, 𝑁 be boundaryless manifolds, and 𝐾 ⊂ 𝑀 a compact subset.
If 𝑓 ∶ 𝑀 → 𝑁 , and 𝑓|𝐾 is an injective local diffeomorphism, then there exists a
neighbourhood 𝑈 of 𝐾 in 𝑀 , such that 𝑓|𝑈 is a diffeomorphism onto its image.

Proof. This is a standard exercise in mathematical analysis. ◻
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Lemma 3.2. Let 𝑀 be a Riemannian 𝑛-manifold without boundary, and let 𝑆 be
a compact 𝑘-submanifold without boundary. Let 𝑁(𝑆) denote the normal bundle
of 𝑆 in 𝑀 , and let 𝑁𝜀(𝑆) denote the 𝜀-neighbourhood of 𝑆 in 𝑁(𝑆). There exists
𝜀 > 0 such that the map

𝑁𝜀(𝑆) ∋ (𝑝, 𝑣) ↦ exp𝑝(𝑣)

is a diffeomorphism of 𝑁𝜀(𝑆) onto its image.

Proof. By (3.1) and the inverse function theorem. ◻

Lemma 3.3. Let 𝑀, 𝑁 be manifolds with 𝜕𝑁 = ∅, and let 𝐴 ⊂ 𝑀 be a closed
subset. A smooth map 𝑓 ∶ 𝐴 → 𝑁 can be extended to 𝑀 , if and only if it can be
continuously extended to 𝑀 .

This is also true if 𝜕𝑁 ≠ ∅ and 𝑓(𝐴) ⊂ 𝜕𝑁 . In this case, if the continuous
extension sends 𝑀 ⧵ 𝐴 into 𝑁 ⧵ 𝜕𝑁 , then we may require the smooth extension to
have the same property.

Proof. [Lee12, Corollary 6.27]. The last statement follows from the construction
in the proof of [Lee12, Theorem 6.21]. ◻

The next extension lemma will reduce our pain dealing with boundaries.

Lemma 3.4. Let 𝑀 ⊂ 𝑀 be 𝑛-manifolds, 𝜕𝑀 = ∅. For every closed submanifold
𝑆 ⊂ 𝑀 , there exists a submanifold 𝑆 ⊂ 𝑀 , such that 𝜕𝑆 = ∅, dim𝑆 = dim𝑆,
and 𝑆 ⊂ 𝑆. If moreover 𝜕𝑆 ⊂ 𝜕𝑀 , then we may require 𝑆 = 𝑆 ∩ 𝑀 .

Proof. Let 𝑆+ ∶= 𝑆 ∪𝜕𝑆 ×[0, +∞), with their boundaries identified in the obvious
way. Choose a complete metric on 𝑆+. By (3.3), the inclusion 𝑆 ↪ 𝑀 can be
extended to a smooth map 𝑓 ∶ 𝑆+ → 𝑀 .

We embed 𝑀 in some ℝ𝑁 as a closed submanifold. Let 𝐵𝑟 denote the open
ball in ℝ𝑁 centred at 0 and of radius 𝑟, or ∅ if 𝑟 ≤ 0. For each 𝑖 ∈ ℕ, denote
𝐾𝑖 ∶= (𝐵𝑖 ⧵𝐵𝑖−1)∩𝑆, and 𝑈𝑖 ∶= (𝐵𝑖+1 ⧵𝐵𝑖−2)∩𝑀 . By (3.1), for each 𝑖 there exists
𝜀𝑖 > 0 so that 𝑓 is a diffeomorphism of the 𝜀𝑖-neighbourhood of 𝐾𝑖−2 ∪ ⋯ ∪ 𝐾𝑖+2
in 𝑆+ onto its image (where 𝐾−1 ∶= 𝐾0 ∶= ∅). We may assume that the im-
ages of the 𝜀𝑖-neighbourhoods of 𝐾𝑖−2, … , 𝐾𝑖+2 are contained in 𝑈𝑖−2, … , 𝑈𝑖+2
respectively. Let 𝜀′

𝑖 ∶= min(𝜀𝑖−2, … , 𝜀𝑖+2) (where 𝜀−1 ∶= 𝜀0 ∶= 𝜀1), and let
𝑆 ∶= ⋃𝑖(𝜀′

𝑖 -neighbourhood of 𝐾𝑖) ⊂ 𝑆+. Then 𝑓|𝑆 is an injective local diffeo-
morphism, and thus a diffeomorphism onto its image.

For the last statement, it suffices to show that 𝑓 can be chosen so that
𝑓 −1(𝑀) = 𝑆. By the last statement of (3.3), we only need a continuous map
𝑔 ∶ 𝜕𝑆 × [0, +∞) → 𝑀 such that 𝑔|𝜕𝑆 is the inclusion and 𝑔−1(𝜕𝑆) = 𝜕𝑆 × 0.
This can be constructed as follows. Let 𝜀∶ 𝜕𝑆 → ℝ>0 be a continuous function
such that for all 𝑝 ∈ 𝜕𝑆, the exponential map exp𝑝(𝑣) is defined for |𝑣| ≤ 𝜀(𝑝).
Now 𝑔 may be defined to be the map (𝑝, 𝑟) ↦ exp𝑝(min(𝑟, 𝜀(𝑝)) 𝜂𝑝), where 𝜂𝑝 is
the unit normal vector of 𝜕𝑀 in T𝑝𝑀 , pointing outwards from 𝑀 . ◻
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Remark 3.5. The same proof applies if 𝑀 and 𝑆 have corners, with a modified
construction of 𝑆+. The last statement remains true if the corners of 𝑀 are con-
vex. ◃
Definition 3.6. Let 𝑀 be a manifold, and let 𝑆, 𝑇 be submanifolds. We say that
𝑆 and 𝑇 intersect transversely, or that 𝑆 is transverse to 𝑇 , if for all 𝑝 ∈ 𝑆 ∩ 𝑇 ,
we have T𝑝𝑀 = T𝑝𝑆 +T𝑝𝑇 . Note that 𝑆, 𝑇 does not necessarily intersect, and they
are not necessarily boundaryless. ◃
Proposition 3.7. If 𝑆 is transverse to 𝑇 , and if their boundaries are contained in
𝜕𝑀 , then 𝑆 ∩ 𝑇 is a submanifold of 𝑀 . ◻
Definition 3.8. Let 𝑆1, … , 𝑆𝑘 ⊂ 𝑀 be submanifolds of 𝑀 . The set {𝑆1, … , 𝑆𝑘}
is said to be transverse, if when 𝑘 > 0, {𝑆1, … , 𝑆𝑘−1} is transverse (defined in-
ductively on 𝑘), and 𝑆𝑘 is transverse to everything in {⋂𝑖∈𝐼 𝑆𝑖 ∣ 𝐼 ⊂ {1, … , 𝑘 −
1} }. ◃

In this case, if we assume that 𝜕𝑆𝑖 ⊂ 𝜕𝑀 for all 𝑖, then every possible intersec-
tion of the 𝑆𝑖 is a submanifold.

The next lemma says that transverse submanifolds can be made orthogonal to
each other by choosing an appropriate metric.

Lemma 3.9. Let 𝑆1, … , 𝑆𝑘 ⊂ 𝑀 be transverse closed submanifolds. Then there
exists a Riemannian metric on 𝑀 , such that whenever 𝑝 ∈ 𝑆𝑖 ∩ 𝑆𝑗 , the subspaces
T𝑝𝑆𝑖 and T𝑝𝑆𝑗 of T𝑝𝑀 are orthogonal.

Proof. By (3.4), we may assume that 𝑀 and the 𝑆𝑖 are boundaryless.
For every 𝑝 ∈ 𝑀 , choose a neighbourhood 𝑈𝑝 that does not intersect with any

𝑆𝑖 not containing 𝑝, such that 𝑈𝑝 is diffeomorphic to ℝ𝑛, and under this diffeomor-
phism, the 𝑆𝑖 containing 𝑝 (if any) are identified with some coordinate subspaces
of ℝ𝑛. This is possible since we may construct smooth functions 𝑓1, … , 𝑓𝑛 near 𝑝,
such that each of these 𝑆𝑖 is locally cut out by the zeros of some of these 𝑓𝑗 (each
𝑓𝑗 is used by at most one 𝑆𝑖), and such that d𝑓1, … , d𝑓𝑛 form a basis for T ∗

𝑝 𝑀 .
Using these 𝑓𝑗 as local coordinate functions, we get a desired diffeomorphism by
the inverse function theorem.

Let 𝑔𝑝 denote the metric on 𝑈𝑝 induced from ℝ𝑛. Let {𝜌𝑝} be a partition of
unity subordinate to the open cover {𝑈𝑝}. Then∑𝑝 𝜌𝑝𝑔𝑝 is a desired metric. ◻

One important result in intersection theory is the transversality theorem [GP74,
p. 68]. Here is one of its important corollaries.

Lemma 3.10. Let 𝑀 be a boundaryless 𝑛-manifold, and let 𝑆1, … , 𝑆𝑘, 𝑇 be sub-
manifolds, where 𝜕𝑇 = ∅, but the 𝑆𝑖 may have corners. For any neighbourhood
𝑈 of 𝑇 , 𝑇 can be moved by an isotopy within 𝑈 , to become transverse to all 𝑆𝑖.

Moreover, the isotopy can be taken to be fixed on any closed subset of 𝑇 where
𝑇 is already transverse to all the 𝑆𝑖.

Proof. By (3.4), we may assume that the 𝑆𝑖 are boundaryless. See [GP74, p. 70]
for a proof in this case. ◻
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The next few results are concerned with the existence of functions with certain
properties. The gradient vector fields of these functionswill be very useful. Wewill
use the flow of these vector fields on the boundary of a handlebody, to manipulate
the handles attached on it.
Lemma 3.11. Let 𝑀 be a closed 𝑛-manifold, and let 𝑆1, … , 𝑆𝑘 ⊂ 𝑀 be trans-
verse compact submanifolds without boundary. Then there exists a smooth function
𝑓 ∶ 𝑀 → [0, 1], such that

(i) 𝑓 −1(0) = 𝑆 ∶= 𝑆1 ∪ ⋯ ∪ 𝑆𝑘.
(ii) 𝑓 has no critical values other than 0, 1.

Proof. By (3.9), there exists a Riemannian metric on 𝑀 , such that any two of
𝑆1, … , 𝑆𝑘 intersect orthogonally.

We claim that for small enough 𝜀 > 0 and 𝑖 = 1, … , 𝑘, there exists a smooth
function 𝑓𝑖,𝜀 ∶ 𝑀 → [0, 1], such that

(i) 𝑓 −1
𝑖,𝜀 (0) = 𝑆𝑖.

(ii) Whenever 𝑓𝑖,𝜀(𝑝) ∈ (0, 1), we have ∇𝑓𝑖,𝜀(𝑝) ≠ 0, and ∇𝑓𝑖,𝜀 points orthogo-
nally outwards from 𝑆𝑖, in the sense that its flow line through 𝑝 is the unique
minimising geodesic from 𝑝 to 𝑆𝑖.

Namely, by (3.2), we may define a function 𝑑𝑖,𝜀 to be 1∕𝜀 times the distance to 𝑆𝑖,
and let 𝑓𝑖,𝜀 = 𝜌 ∘ 𝑑𝑖,𝜀, where 𝜌∶ [0, +∞) → [0, 1] is a smooth function, such that
𝜌(𝑟) = 1 when 𝑟 ≥ 1, 𝜌(0) = 𝜌′(0) = ⋯ = 0, and 𝜌′(𝑟) > 0 if 0 < 𝑟 < 1.

Denote 𝑈𝑖,𝜀 = 𝑓 −1
𝑖,𝜀 ([0, 1)). Now we take 𝑓 = 𝑓1,𝜀 ⋯ 𝑓𝑘,𝜀, where we choose

𝛿 > 𝜀 > 0 small enough, so that
(i) 𝑓𝑖,2𝛿 is defined for all 𝑖.
(ii) For every path of length ℓ in 𝑈𝑖,2𝛿 , its projection to 𝑆𝑖 has length < 2ℓ.
(iii) Whenever 𝑝 ∈ ⋂𝑖∈𝐼 𝑈𝑖,𝜀 for some 𝐼 ⊂ {1, … , 𝑘}, there exists a path from 𝑝

to⋂𝑖∈𝐼 𝑆𝑖 with length < 𝛿.
(iv) Whenever a vector is parallel transported along a loop of length < 4𝛿, its

direction changes by an angle < π∕8.
(v) Whenever a vector is parallel transported along a curve of length < 2𝛿 on

𝑆𝑖, the angle between the vector and 𝑆𝑖 changes by < π∕8.
(iii) is possible, since if no such 𝜀 exists, we would have a contradiction against
sequential compactness of 𝑆. (iv) is possible since the Riemann curvature tensor
of 𝑀 is bounded. (v) is possible since the second fundamental forms of the 𝑆𝑖 are
bounded.

We claim that for any 𝑝 that is 𝜀-near 𝑆, 𝑝 is not a critical point of 𝑓 . (For
simplicity, two things are 𝜀-near if their distance is < 𝜀.) Indeed, suppose 𝑝 is
𝜀-near 𝑆𝑖 for 𝑖 ∈ 𝐼 , while not 𝜀-near the others. Denote 𝑆𝐼 ∶= ⋂𝑖∈𝐼 𝑆𝑖 and
𝑈𝐼,𝜀 ∶= ⋂𝑖∈𝐼 𝑈𝑖,𝜀. Note that

∇𝑓(𝑝) = ∑
𝑖∈𝐼

𝑓(𝑝)
𝑓𝑖,𝜀(𝑝)∇𝑓𝑖,𝜀(𝑝).
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Let 𝑝𝑖 denote the projection of 𝑝 to 𝑆𝑖, and let 𝑞 be a point in 𝑆𝐼 that is 𝛿-near
𝑝. Let 𝛾 be a path from 𝑝 to 𝑞 of length < 𝛿 (thus it falls in 𝑈𝐼,2𝛿), and let 𝛾𝑖 be the
projection of 𝛾 to 𝑆𝑖, which is a path from 𝑝𝑖 to 𝑞 of length < 2𝛿. Let 𝑣𝑖 ∈ T𝑝𝑖

𝑀
be the vector pointing to 𝑝, of length |∇𝑓𝑖,𝜀(𝑝)|. Let 𝑤𝑖 ∈ T𝑞𝑀 denote its parallel
transport along 𝛾𝑖. Then the angle between 𝑤𝑖 and T𝑞𝑆𝑖 is > 3π∕8. Note that 𝑤𝑖
is obtained from ∇𝑓𝑖,𝜀(𝑝) ∈ T𝑝𝑀 by parallel translation along the path 𝑝—𝑝𝑖—𝑞.
If we instead translate it directly along 𝛾 , the resulting vector, say 𝑢𝑖, would have
a direction that differ from 𝑤𝑖 by < π∕8. Thus the angle between 𝑢𝑖 and T𝑝𝑆𝑖 is
> π∕4. But the 𝑆𝑖 are transverse and orthogonal at 𝑝, hence by a standard argument
in linear algebra, the 𝑢𝑖 are linearly independent, and so are the vectors ∇𝑓𝑖,𝜀(𝑝).
This implies that ∇𝑓(𝑝) ≠ 0. ◻

Remark 3.12. This is not true for an arbitrary closed subset 𝑆. For example,
consider 𝑆 = Cantor set ⊂ 𝑀 = 𝑆1. ◃

We will need a slightly more general form of this lemma, which follows from
exactly the same construction (involving distance functions to submanifolds with
boundary, which are not necessarily smooth near the boundary).
Corollary 3.13. Let 𝑀 be a closed 𝑛-manifold, and let 𝑆1, … , 𝑆𝑘 ⊂ 𝑀 be trans-
verse compact submanifolds, possibly with boundary. Let 𝑈 denote an open neigh-
bourhood of 𝜕𝑆1∪⋯∪𝜕𝑆𝑘. Then there exists a smooth function 𝑓 ∶ 𝑀⧵𝑈 → [0, 1],
such that

(i) 𝑓 −1(0) = (𝑆1 ∪ ⋯ ∪ 𝑆𝑘) ⧵ 𝑈 .
(ii) 𝑓 has no critical values other than 0, 1. ◻
Finally, we mention two results concerning isotopies.

Lemma 3.14 (Isotopy extension theorem). If 𝜕𝑀 = ∅ and 𝑆 is compact, then
every compactly supported isotopy ℎ∶ 𝑆 ×ℝ → 𝑀 can be extended to a compactly
supported diffeotopy on 𝑀 .
Proof. [Hir76, Theorem 8.1.3]. ◻

Lemma 3.15. Let 𝑀 be a connected 𝑛-manifold. If 𝑀 is orientable, then two
embeddings 𝐷𝑛 ↪ 𝑀 are isotopic if and only if they have the same orientation. If
𝑀 is non-orientable, then all such embeddings are isotopic.
Proof. We first consider the special case 𝑀 = ℝ𝑛. We may assume the embedding
𝑓 ∶ 𝐷𝑛 → ℝ𝑛 sends 0 to 0, preserving orientation. Using a smooth path in GL(𝑛),
i.e. a smooth family of linear transformations, we may assume d𝑓(0) = 𝟙. We
further shrink the disk linearly (w.r.t. the disk) by an isotopy, and then enlarge it
linearly (w.r.t. ℝ𝑛) to recover d𝑓(0) = 𝟙, so that if we denote 𝑔(𝑥) ∶= 𝑓(𝑥) − 𝑥,
then the norm of d𝑔(𝑥) (supremum of |d𝑔(𝑥)𝑣|∕|𝑣| for 𝑣 ≠ 0) is < 1∕2 for all
𝑥 ∈ 𝐷𝑛. This will ensure that the linear homotopy ℎ𝑡 from 𝑓 to the standard
inclusion 𝐷𝑛 ↪ ℝ𝑛 is injective for all 𝑡, and thus it is an isotopy.

For the general case, we may shrink 𝐷𝑛 into a coordinate chart, and then trans-
port it along a finite sequence of coordinate charts. Doing this for both disks, we
are reduced to the first case. ◻
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4 The proofs

This section is dedicated to the proofs of the rearrangement theorem (2.2) and the
cancellation theorem (2.3) for weak handlebodies.

The rearrangement theorem

Definition 4.1. Let 𝑀 be a manifold. A smooth function 𝜃 ∶ 𝑀 → [0, 1] is called
a level function, if 𝜃−1(0) = 𝜕𝑀 and 𝜃 has no critical points on 𝜕𝑀 . ◃

Proposition 4.2. Every smooth manifold has a level function.

Proof. Exercise for the reader. ◻

Definition 4.3. Let 𝑀 be a manifold with a level function 𝜃, and let 𝜀 > 0. An
𝜀-sliding of 𝑀 is a diffeotopy ℎ∶ 𝑀 × ℝ → 𝑀 , such that

(i) ℎ is supported in {𝑝 ∈ 𝑀 ∣ 𝜃(𝑝) < 𝜀}.
(ii) 𝜃 is preserved by ℎ. ◃

Intuitively, an 𝜀-sliding moves the boundary around, and keeps most of the
interior fixed. When we talk about an 𝜀-sliding, we will implicitly assume that
some level function 𝜃 is chosen.

Lemma 4.4. Let 𝑀 be a manifold, and let 𝜀 > 0. If 𝑋 is a compactly supported
vector field on 𝜕𝑀 , then 𝑋 can be extended to a vector field 𝑋 on 𝑀 , which gen-
erates an 𝜀-sliding of 𝑀 .

Proof. Let 𝑈 ∶= {𝑝 ∈ 𝑀 ∣ 𝜃(𝑝) < 𝜀}, where 𝜃 is the level function. Let 𝐾 ⊂ 𝜕𝑀
denote the support of 𝑋. Let 𝜕𝑀 × [0, +∞) ⊂ 𝑀 be a collar neighbourhood.
Since 𝐾 is compact, we may assume 𝐾 × [0, 𝜀] ⊂ 𝑈 . We also assume that 𝜃 has
no critical points in 𝐾 × [0, 𝜀].

Let 𝜌∶ [0, +∞) → [0, 1] be a smooth function such that 𝜌(0) = 1 and 𝜌(𝑟) = 0
when 𝑟 > 𝜀∕2. We first extend 𝑋 to 𝑀 by letting

𝑋𝑝 ∶= {
𝜌(𝑟) 𝑋𝑞 , 𝑝 = (𝑞, 𝑟) ∈ 𝐾 × [0, 𝜀],
0, otherwise.

Next we take a metric on 𝑀 , so that for all 𝑝 ∈ 𝜕𝑀 , ∇𝜃(𝑝) is orthogonal to
T𝑝(𝜕𝑀) ⊂ T𝑝𝑀 . This is possible by the constant rank theorem, together with a
partition of unity. We define

𝑋 ∶= 𝑋 − ⟨𝑋, ∇𝜃⟩
|∇𝜃|2 ∇𝜃.

Since 𝑋 is supported in 𝐾 × [0, 𝜀], it generates a diffeotopy ℎ. Since 𝑋 is
orthogonal to ∇𝜃, ℎ is indeed an 𝜀-sliding. ◻



12 A Generalised Handle Theory

Remark 4.5. If 𝑋 is instead supported in a disjoint union of countably many com-
pact sets, the lemma still holds true. The reason is that the collar is global, and will
make sure that the sets 𝐾 × [0, 𝜀] are disjoint.

Corollary 4.6. Every diffeotopy of 𝜕𝑀 supported in a disjoint union of (possibly
infinitely many) compact sets can be extended to an 𝜀-sliding of 𝑀 .

Proof. Apply (4.4) to the velocity field of the diffeotopy. This is a time-dependent
vector field, but the above proof applies as well. ◻

Lemma 4.7. Let (𝑁, 𝐴) be a relative 𝑛-handlebody, and let Φ∶ 𝜕1ℎ𝜆 → 𝜕𝑁 be an
embedding, where 𝜆 ≠ 0, 𝑛. For any neighbourhood 𝑈 of the cobelt Φ(𝜕𝐷𝜆 × 0)
in 𝜕𝑁 , the image of Φ can be moved into 𝑈 by an isotopy.

Proof. Take anymetric on 𝜕𝑁 . Then there exists 𝜀 > 0 such that Φ(𝜕𝐷𝜆 ×𝐷𝑛−𝜆
𝜀 ) ⊂

𝑈 , where 𝐷𝑛−𝜆
𝜀 denotes the disk of radius 𝜀. Now shrink Φ(𝜕𝐷𝜆 × 𝐷𝑛−𝜆) into this

𝜀-neighbourhood linearly. ◻

Definition 4.8. Let (𝑁, 𝐴) be a weak relative 𝑛-handlebody, let 𝑖 ≥ 0 be a fixed
integer, and let ℎ∶ 𝑁𝑖 → 𝑁𝑖 be a diffeomorphism. The perturbation by ℎ of (𝑁, 𝐴)
is a relative handlebody (𝑁ℎ, 𝐴), with attaching maps Φℎ

𝑗 , defined as follows:

• 𝑁ℎ
𝑗 = 𝑁𝑗 and Φℎ

𝑗 = Φ𝑗 for all 𝑗 ≤ 𝑖.
• Φℎ

𝑖+1 = ℎ ∘ Φ𝑖+1. This induces a diffeomorphism ℎ𝑖+1 ∶ 𝑁𝑖+1 → 𝑁ℎ
𝑖+1.

• Φℎ
𝑖+2 = ℎ𝑖+1 ∘ Φ𝑖+2, inducing a diffeomorphism ℎ𝑖+2 ∶ 𝑁𝑖+2 → 𝑁ℎ

𝑖+2.
• And so on.

The perturbation is called an 𝜀-perturbation if ℎ is an 𝜀-sliding.
A finite composition of perturbations is also considered a perturbation. ◃

After a perturbation, the handles attached after the 𝑖-th step will get attached to
different handles, but the new handlebody is similar to the original one. We will
see that every handlebody can be perturbed into a good one.

Notation 4.9. Write

𝜕1ℎ𝜆 ∶= 𝜕𝐷𝜆 × 𝐷𝑛−𝜆 and 𝜕2ℎ𝜆 ∶= 𝐷𝜆 × 𝜕𝐷𝑛−𝜆,

so that 𝜕ℎ𝜆 = 𝜕1ℎ𝜆 ∪ 𝜕2ℎ𝜆. ◃

The idea of our proof of the rearrangement theorem is to create a vector field
on the side of each handle, so that other handles attached on it can be slid out of it
along this vector field.

Definition 4.10. Let ℎ𝜆 be a 𝜆-handle, where 𝜆 ≠ 0, 𝑛. Let 𝐵 ⊂ 𝜕2ℎ𝜆 be a closed
subset, and let 𝑂 denote the belt of ℎ𝜆. An expanding field of ℎ𝜆 with respect to 𝐵
is a vector field 𝑋 on 𝜕2ℎ𝜆, such that

• 𝑋𝑝 = 0 if and only if 𝑝 ∈ 𝐵 ∪ 𝑂.
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• For every 𝑝 ∈ 𝜕2ℎ𝜆 ⧵ (𝐵 ∪ 𝑂), the flow line of 𝑋 starting from 𝑝 reaches
𝜕𝜕2ℎ𝜆 within finite time.

Let (𝑁, 𝐴) be a finite relative 𝑛-handlebody. Its skeleton is defined to be the set
Σ of compact submanifolds of 𝜕𝑁 , consisting of

(i) The intersection of 𝜕𝑁 with the boundary of the image of every attaching
map.

(ii) The intersection of 𝜕𝑁 with the belt of each handle.
(iii) All possible intersections of the manifolds listed above.

In order for (iii) to be well-defined, we require that the set of submanifolds in (i)
and (ii) is transverse. Such a finite relative handlebody is said to be regular. We
denote by Σ𝑖 the skeleton of (𝑁𝑖, 𝐴), and call it the 𝑖-skeleton of (𝑁, 𝐴).

A regular 𝑛-handlebody (𝑁, 𝐴) is said to be expanded, if every 𝜆-handleℎ𝜆 with
𝜆 ≠ 0, 𝑛 has an expanding field with respect to the union of images of attaching
maps of handles that are attached after it. ◃

An expanding field does not necessarily exist for arbitrary 𝐵. For example,
consider the case 𝑛 = 2, 𝜆 = 1 and 𝐵 is a point not in 𝑂.

The next lemma makes clear how expanding fields work. The main idea of the
proof is visualised below.

2

1

1

00

(a) (b) (c)
(a) A 4-handlebody, where numbers indicate types of handles. A 1-handle

is drawn with its expanding field. (Of course what is seen here is a 3-
dimensional analogue of the real thing.)

(b) Attach a 3-handle, where the shaded part indicates the image of the at-
taching map.

(c) Stretch the attaching map using the expanding field, and construct a new
expanding field on the 1-handle.

Lemma 4.11. Let (𝑁, 𝐴) be a finite relative 𝑛-handlebody with 𝑖 handles, such
that (𝑁𝑖−1, 𝐴) is good and expanded. Then 𝑁𝑖−1 can be 𝜀-slid, so that the induced
𝜀-perturbation is good and expanded.

Proof. Let ℎ𝜆 denote the handle to be attached, and let Φ denote the attaching map.
Let ℎ𝑗 denote the handle attached in the 𝑗-th step. Since (𝑁𝑖−1, 𝐴) is good, we may
assume ℎ1, … , ℎ𝑖−1 are of ascending types.

First we try to slide im(Φ) to avoid all handles of type ≥ 𝜆. Suppose im(Φ)
intersects with some ℎ𝑗 with type ≥ 𝜆, and we fix the largest 𝑗 with this property.
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Then im(Φ) does not intersect with ℎ𝑗+1, … , ℎ𝑖−1. By reparametrising ℎ𝜆, we may
assume that the cobelt Φ(𝜕𝐷𝜆 × 0) avoids the belt 𝑂 of ℎ𝑗 . By (4.7), we can shrink
im(Φ) so that it does not meet 𝑂. We then extend the expanding field on ℎ𝑗 to
a small neighbourhood in 𝜕𝑁𝑗 ∩ 𝜕𝑁𝑖−1 that does not meet any handles attached
after the 𝑗-th step, and we could slide im(Φ) out of 𝜕2ℎ𝑗 using the flow 𝜑𝑡 of the
expanding field for large enough 𝑡. We do this for all ℎ𝑗 , in descending order until
im(Φ) finally gets to a (literally) good position, i.e. within 𝜕𝑁𝑖′−1, where 𝑖′ denotes
the step where the first handle of type ≥ 𝜆 is attached.

Our next plan is to do an 𝜀-sliding for each 𝑗 = 𝑖′ − 1, … , 1, making the corre-
sponding handle expanded at each time. By (3.10), we may assume that Φ(𝜕𝜕2ℎ𝜆)
is transverse to everything in Σ𝑖′−1, while keeping im(Φ) disjoint with ℎ𝑖′ , … , ℎ𝑖−1.

In the 𝑗-th step, let 𝑋 denote the expanding field on 𝜕2ℎ𝑗 . Let 𝐵 ⊂ 𝜕𝑁𝑗 denote
the union of images of attaching maps in steps 𝑗 + 1, … , 𝑖 − 1, intersected with
𝜕𝑁𝑗 . Let Φ′ denote the composition of Φ with the previously executed slidings.

Let 𝑆𝑗+1, … , 𝑆𝑖 be the boundaries of images of attaching maps in the corre-
sponding steps, intersected with 𝜕𝑁𝑗 , so that 𝑆𝑖 = Φ′(𝜕𝜕2ℎ𝜆) ∩ 𝜕𝑁𝑗 . Let 𝑂 denote
the belt of ℎ𝑗 . Thus the 𝑆𝑘 and 𝐵 are submanifolds possibly with corners, and
the corners of 𝐵 are concave. By (3.4) and the remark after it, we may extend the
𝑆𝑘 that have boundaries a little bit into 𝐵, so that the extended manifolds 𝑆′

𝑘 are
compact, and 𝜕𝑆′

𝑘 ⊂ 𝐵∘ for all 𝑘.
By regularity of (𝑁𝑖−1, 𝐴), we may assume 𝑂, 𝑆′

𝑗+1, … , 𝑆′
𝑖 are transverse

(shrinking a bit the extended part if necessary). Thus by (3.13), there is a smooth
function 𝑓 ∶ 𝜕𝑁𝑗 ⧵ 𝐵∘ → [0, 1], with 𝑓 −1(0) = (𝑂 ∪ 𝑆′

𝑗+1 ∪ ⋯ ∪ 𝑆′
𝑖 ) ⧵ 𝐵∘, with no

critical values other than 0, 1. We modify 𝑓 by letting 𝑓|𝐵 ≡ 0 and 𝑓|im(Φ′) ≡ 0.
Now 𝑓 becomes a smooth function 𝜕𝑁𝑗 → [0, 1] with 𝑓 −1(0) = 𝑂 ∪ 𝐵 ∪ im(Φ′),
and it has no critical values other than 0, 1.

We extend 𝑋 to a compactly supported smooth vector field on 𝜕𝑁𝑗 , so that
𝑋|𝐵 = 0, and for any 𝑝 ∈ 𝜕𝜕2ℎ𝑗 such that 𝑋𝑝 ≠ 0, the change of 𝑓 along the
extended part of the flow line of 𝑋 through 𝑝 is < 1∕2.

We take a large number 𝑡 ∈ ℝ, such that the flow ℎ ∶= 𝜑𝑡 of 𝑋 satisfies

ℎ(𝑓 −1([1∕2, 1]) ∩ 𝜕2ℎ𝑗) ∩ 𝜕2ℎ𝑗 = ∅.

By (3.10), after performing a small isotopy preserving the above condition, keeping
𝐵 fixed, we may assume that ℎ(Φ′(𝜕𝜕2ℎ𝜆)) is transverse to everything in Σ𝑖−1.

Take a metric on 𝜕2ℎ𝑗 , and put

𝑌𝑝 ∶= dℎ(∇𝑓(ℎ−1(𝑝))).

One verifies that 𝑌 is a new expanding field on 𝜕2ℎ𝑗 , but with respect to 𝐵 ∪ im(ℎ ∘
Φ′) instead of 𝐵. Note that ℎ keeps 𝐵 fixed. Finally we execute the 𝜀-sliding
induced by ℎ.

We have finished the 𝑗-th step. Running over 𝑗 = 𝑖′ − 1, … , 1 gives a desired
𝜀-sliding, and gives desired expanding fields on all handles except the 𝑖-th one.
But the 𝑖-th handle is trivially done. Regularity is preserved throughout the above
construction. ◻
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Having done much preparatory work, we are finally ready to take our final step
to proving (2.2), namely, the concatenation of these infinitely many slidings given
by the preceding lemma.

Proof of (2.2). Let (𝑁, 𝐴) be a weak relative 𝑛-handlebody. We may assume that
only one handle is attached in each step. For each 𝑖 ≥ 0, we may regard (𝑁𝑖, 𝐴) as
a non-weak relative handlebody. Let 𝜃𝑖 be a level function on 𝑁𝑖 for 𝑖 = 0, 1, … ,
so that 𝜃𝑖 ≤ 𝜃𝑖+1 for all 𝑖.

Denote 𝑁1 = 𝑁 . Note that (𝑁1
1 , 𝐴) is automatically expanded. By (4.11),

𝑁1
1 can be 1∕2-slid, so that if we denote by (𝑁2, 𝐴) the induced perturbation, then

(𝑁2
2 , 𝐴) is expanded. We continue to 1∕4-slide 𝑁2

2 to get a perturbation (𝑁3, 𝐴)
of (𝑁2, 𝐴), so that (𝑁3

3 , 𝐴) is expanded. Continuing this process, using 1∕2𝑖 in the
𝑖-th step, we get a commutative grid of maps

𝑁1
0 𝑁1

1 𝑁1
2 𝑁1

3 𝑁1
4 ⋯

𝑁2
0 𝑁2

1 𝑁2
2 𝑁2

3 𝑁2
4 ⋯

𝑁3
0 𝑁3

1 𝑁3
2 𝑁3

3 𝑁3
4 ⋯ ,

… …

≃ ≃ ≃ ≃

≃ ≃ ≃

≃ ≃

where the vertical maps are all diffeomorphisms. By construction 𝑁 𝑖
𝑖 and 𝑁 𝑖+1

𝑖
are naturally identified, but note that the identification is not the diffeomorphism
(sliding) in the diagram. We define 𝜃𝑖 on 𝑁 𝑖

𝑗 for 𝑖 ≤ 𝑗 + 1 to be the level function
inherited from 𝑁𝑗 = 𝑁1

𝑗 . Thus for 𝑁 𝑖
𝑖 and 𝑁 𝑖+1

𝑖 , their functions 𝜃𝑖 are the same
under the natural identification.

We define a good weak relative 𝑛-handlebody (𝑁 ′, 𝐴) by 𝑁 ′
𝑖 ∶= 𝑁 𝑖

𝑖 , and the
inclusion maps being 𝑁 𝑖

𝑖 = 𝑁 𝑖+1
𝑖 ↪ 𝑁 𝑖+1

𝑖+1 . This is not the map in the above
diagram! But for 𝑝 ∈ 𝑁 𝑖

𝑖 ⊂ 𝑁 𝑖+1
𝑖+1 , we still have 𝜃𝑖(𝑝) ≤ 𝜃𝑖+1(𝑝). We will show that

𝑁 is diffeomorphic to 𝑁 ′.
Consider the (not commutative) diagram

𝑁1 𝑁2 𝑁3 ⋯

𝑁1
1 𝑁2

2 𝑁3
3 ⋯ ,

≃ ≃ (∗)

where the vertical maps are as in the above grid-like diagram. By comparing the
above two diagrams, the square

𝑁𝑖 𝑁𝑖+1

𝑁 𝑖
𝑖 𝑁 𝑖+1

𝑖+1

≃ ≃
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commutes for some 𝑝 ∈ 𝑁𝑖 if and only if 𝑝 is fixed by the sliding 𝑁 𝑖
𝑖 → 𝑁 𝑖+1

𝑖 . This
happens whenever 𝜃𝑖(𝑝) > 1∕2𝑖. Thus for

𝑈𝑖 ∶= {𝑝 ∈ 𝑁𝑖 ∣ 𝜃𝑖(𝑝) > 1∕2𝑖},

the diagram (∗) commutes after the 𝑖-th square. Thus we have an induced diffeo-
morphism of 𝑈𝑖 onto a subset of 𝑁 ′. Since 𝑁 = ⋃∞

𝑖=1 𝑈𝑖, we have an induced
map 𝜑∶ 𝑁 → 𝑁 ′ which is a diffeomorphism onto its image. Clearly 𝜑 is also
surjective since 𝑁 ′ = ⋃∞

𝑖=1 im(𝑈𝑖 → 𝑁 ′). Thus 𝜑 is a diffeomorphism. ◻

The cancellation theorem

We first state the cancellation theorem for finite handlebodies.

Theorem 4.12 (Cancellation, finite case). Let 𝑁 = 𝐴∪Φ1 ℎ𝜆 ∪Φ2 ℎ𝜆+1 be a relative
handlebody with 2 handles. If the cobelt of ℎ𝜆+1 and the belt of ℎ𝜆 intersect trans-
versely at precisely one point, then 𝑁 is diffeomorphic to 𝐴. This diffeomorphism
can be taken to be fixed on any closed subset of 𝐴 ⧵ im(Φ1) ⧵ im(Φ2).

Proof. [Wal16, Theorem 5.4.3] or [Mat02, Theorem 3.34]. ◻

For convenience, we introduce the following terminology. In a good relative
handlebody, a pair of 𝜆- and (𝜆+1)-handles is called a cancelling pair, if the cobelt
of the (𝜆 + 1)-handle and the belt of the 𝜆-handle intersect transversely at precisely
one point. The (𝜆 + 1)-handle will be called the canceller, and the 𝜆-handle will
be called the cancellee.

We say that we can cancel a set 𝑆 of handles from a weak relative handlebody
(𝑁, 𝐴), if 𝑁 is diffeomorphic to a weak relative handlebody, whose 𝜆-handles cor-
respond to the 𝜆-handles of 𝑁 that are not in 𝑆, and the combinatorics concerning
which handles are attached to other handles should not change, except that a han-
dle attached to a cancelled handle may get attached to a handle which a cancelled
handle was attached to.

Theorem 4.13 (Cancellation, infinite case). Let (𝑁, 𝐴) be a weak relative han-
dlebody whose handles are attached one at a time, and let 𝑆 be a set of handles
consisting of cancelling pairs that do not have handles in common, such that every
canceller in𝑆 is attached immediately after its cancellee. Then𝑆 can be cancelled.

Proof. We will construct a new weak handlebody 𝑁 ′ diffeomorphic to 𝑁 , with
the desired property.

Let 𝑁 ′
0 ∶= 𝑁0 = 𝐴, and let 𝜃0 be a level function on it. Let 𝜑0 ∶ 𝑁0 → 𝑁 ′

0
be a diffeomorphism. As we construct 𝑁 ′, we will construct diffeomorphisms
𝜑𝑖 ∶ 𝑁𝑖 → 𝑁 ′

𝑖 , and level functions 𝜃𝑖 on 𝑁 ′
𝑖 , such that 𝜃𝑖 ≤ 𝜃𝑖+1 on 𝑁 ′

𝑖 . This will
be implicit in the below construction.

In the 𝑖-th step, if the 𝑖-th handle of 𝑁 is not a canceller or a cancellee, then
we attach a same handle to 𝑁 ′ according to 𝜑𝑖−1, and let 𝜑𝑖 be the induced diffeo-
morphism. If it is a cancellee (followed by its canceller), then we will not attach
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handles to 𝑁 ′ in the 𝑖-th and (𝑖 + 1)-th steps. Instead, we construct by (4.12) a
diffeomorphism 𝜑𝑖+1 to form a (not commutative) diagram

𝑁𝑖−1 𝑁𝑖 𝑁𝑖+1

𝑁 ′
𝑖−1 𝑁 ′

𝑖 𝑁 ′
𝑖+1.

𝜑𝑖−1 ≃ 𝜑𝑖+1 ≃

By the last statement of (4.12), we may require the diagram to commute in 𝑈 ′
𝑖−1 ∶=

{𝑝 ∈ 𝑁 ′
𝑖−1 ∣ 𝜃𝑖−1(𝑝) > 1∕2𝑖−1}. We take a new level function 𝜃𝑖+1 on 𝑁 ′

𝑖+1, so that
for all 𝑝 ∈ 𝑁 ′

𝑖−1, we have

𝜃𝑖+1(𝑝) ≥ 𝜃𝑖−1(𝑝) and 𝜃𝑖+1(𝑝) ≥ 𝜃𝑖−1(𝜑𝑖+1 ∘ 𝜑−1
𝑖−1(𝑝)).

By a same argument as before, we have a colimit map from 𝑁 ′ to 𝑁 , which is an
embedding. It is surjective by the choice of the functions 𝜃𝑖. ◻

We have now completed the proof of our two main theorems. They can be
combined to obtain the following result, which simplifies weak handlebodies.

Definition 4.14. Let 𝑛 ≥ 𝑚 ≥ 0 be integers. An (𝑛, 𝑚)-handlebody is an 𝑛-
handlebody whose handles are of type 0, 1, … , 𝑚. ◃

Corollary 4.15. Every connected finite handlebody is diffeomorphic to a handle-
body with only one 0-handle. Every connected weak handlebody is diffeomorphic
to a good weak handlebody with only one 0-handle.

Proof. For the finite case, we may suppose that the handlebody is good by (1.5).
Thus it suffices to prove the statement for an (𝑛, 1)-handlebody. Consider a graph
with vertices corresponding to the 0-handles and edges corresponding to the 1-
handles. Then this graph is connected. Taking a maximal tree of this graph, we
may assume the handlebody is simply connected (by discarding the 1-handles not
in the tree). Thus the result follows from (4.12), by cancelling the 0- and 1-handles
a pair at a time.

For the weak case, we suppose that the handlebody is good by (2.2). We con-
struct a graph and take a maximal tree in the same way, and the statement follows
from (4.13). ◻

5 Handle chain complexes

One might notice the resemblance between a handlebody and a CW complex. In
fact, they are related in the following way.

Definition 5.1. Let (𝑁, 𝐴) be a good, weak or non-weak, relative handlebody. We
define its associated CW complex (𝑋, 𝐴) as follows. Assume for𝑁 that the handles
are attached one at a time.
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• Let 𝑋0 ∶= 𝐴 as a trivial relative CW complex over 𝐴, and let 𝑝0 ∶ 𝑁0 → 𝑋0
be the identity map.

• If 𝑁1 = 𝑁0 ∪Φ1 ℎ𝜆, we define 𝑋1 ∶= 𝑋0 ∪𝜑1 𝐷𝜆, where 𝜑1 ∶= 𝑝0 ∘Φ1|𝜕𝐷𝜆×0.
We define a continuous map 𝑝1 ∶ 𝑁1 → 𝑋1 as follows. Let 𝑝1 agree with 𝑝0
on 𝑁0, and let it be the projection to the core 𝐷𝜆 × 0 of ℎ𝜆.

• We then define 𝑋2 and 𝑝2, and so on.
Thus 𝑋 ∶= ⟶lim𝑋𝑖 is a relative CW complex over 𝐴. ◃
Proposition 5.2. The associated CW complex is homotopy equivalent to the orig-
inal, weak or non-weak, relative handlebody.

Proof. Theweak case needs an extra first step. Note that𝑁𝑖 is homotopy equivalent
to𝑁𝑖⧵𝜕𝑁𝑖, since if we take a collar neighbourhood 𝜕𝑁𝑖×[0, +∞), then both spaces
retract to 𝑁𝑖 ⧵ 𝜕𝑁𝑖 × [0, 1).

We claim that each 𝑝𝑖 is a homotopy equivalence. This is shown by induction
on 𝑖. Since the projection onto the core is a homotopy equivalence between ℎ𝜆 and
𝐷𝜆, by [MP12, Lemma 2.1.3], 𝑁𝑖 ∶= 𝑁𝑖−1 ∪Φ𝑖 ℎ𝜆 and 𝑋𝑖 ∶= 𝑋𝑖−1 ∪𝜑𝑖 𝐷𝜆 are
homotopy equivalent through the induced map 𝑝𝑖.

Finally, by [MP12, Lemma 2.1.10], the colimit map 𝑝∶ 𝑁 → 𝑋 is a homotopy
equivalence. ◻

As a consequence, the (co)homology groups of a handlebody can be computed
by the cellular (co)chain complex of its associated CW complex. We shall define
an analogous (co)chain complex associated to a handlebody.
Definition 5.3. Let 𝑀, 𝑆, 𝑇 be oriented 𝑚-, 𝑠- and 𝑡-manifolds without boundary,
with 𝑆, 𝑇 compact and 𝑠 + 𝑡 = 𝑚. Let 𝑓 ∶ 𝑆 → 𝑀 , 𝑔 ∶ 𝑇 → 𝑀 be embeddings.
If 𝑓(𝑆) is transverse to 𝑔(𝑇 ), then we define the intersection number of 𝑓, 𝑔 to be

#(𝑓 , 𝑔) ∶= ∑
𝑝∈𝑓(𝑆)∩𝑔(𝑇 )

±1,

where the sign is decided by whether the vector space isomorphism T𝑝𝑀 ≃
T𝑝𝑓(𝑆) ⊕ T𝑝𝑔(𝑇 ) preserves (+1) or reverses (−1) the orientation. ◃
Proposition 5.4. Under the above assumptions, if 𝑓 is isotopic to 𝑓 ′ and 𝑔 is
isotopic to 𝑔′, such that 𝑓 ′(𝑆) is transverse to 𝑔′(𝑇 ), then #(𝑓 , 𝑔) = #(𝑓 ′, 𝑔′).
Proof. By (3.14), we may extend the isotopy from 𝑔 to 𝑔′ to an isotopy of 𝑀 . Thus
we may assume 𝑔 = 𝑔′. For a proof in this case, see [GP74, p. 108]. ◻

Therefore, the intersection number is well-defined for isotopy classes of maps.
This allows us to define the intersection number for submanifolds that are not nec-
essarily transverse.
Definition 5.5. Let 𝑀, 𝑆, 𝑇 be oriented 𝑚-, 𝑠- and 𝑡-manifolds without boundary,
where 𝑆, 𝑇 are compact submanifolds of 𝑀 with 𝑠 + 𝑡 = 𝑚. Their intersection
number #(𝑆, 𝑇 ) is defined to be any #(𝑓 , 𝑔), such that 𝑓 is isotopic to the embedding
𝑆 ↪ 𝑀 , 𝑔 is isotopic to 𝑇 ↪ 𝑀 , and 𝑓(𝑆) is transverse to 𝑔(𝑇 ). ◃
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For any given 𝑀, 𝑆, 𝑇 , such 𝑓, 𝑔 always exist. This is a consequence of (3.10).

Definition 5.6. Let 𝑁 be a good, weak or non-weak, 𝑛-handlebody, and let 𝐺 be
an abelian group. The handle chain complex 𝐶•(𝑁; 𝐺) of 𝑁 is defined as follows.

• 𝐶𝜆(𝑁; 𝐺) ∶= ⨁𝛼 𝐺 ⋅ [ℎ𝜆
𝛼] for 𝜆 = 0, … , 𝑛, and 0 otherwise. Here ℎ𝜆

𝛼 runs
through all 𝜆-handles of 𝑁 .

• 𝜕𝜆 ∶ 𝐶𝜆(𝑁; 𝐺) → 𝐶𝜆−1(𝑁; 𝐺) is defined on basis elements by

𝜕𝜆[ℎ𝜆
𝛼] ∶= ∑ #(cobelt(ℎ𝜆

𝛼), belt(ℎ𝜆−1
𝛽 )) [ℎ𝜆−1

𝛽 ],

where the sum is taken over all (𝜆 − 1)-handles ℎ𝜆−1
𝛽 attached before ℎ𝜆

𝛼 .

If 𝑁 is locally finite, then we define the handle cochain complex 𝐶•(𝑁; 𝐺) as
follows.

• 𝐶𝜆(𝑁; 𝐺) ∶= 𝐶𝜆(𝑁; 𝐺).
• 𝑑𝜆 ∶ 𝐶𝜆(𝑁; 𝐺) → 𝐶𝜆+1(𝑁; 𝐺) is defined on basis elements by

𝑑𝜆[ℎ𝜆
𝛼] ∶= ∑ #(belt(ℎ𝜆

𝛼), cobelt(ℎ𝜆+1
𝛽 )) [ℎ𝜆+1

𝛽 ],

where the sum is taken over all (𝜆 + 1)-handles ℎ𝜆+1
𝛽 attached after ℎ𝜆

𝛼 .

The relative versions, namely 𝐶•(𝑁, 𝐴; 𝐺) and 𝐶•(𝑁, 𝐴; 𝐺), are defined simi-
larly. ◃

We need to prove that these are indeed chain complexes. We do this by showing
that the homological version is isomorphic to the cellular chain complex of a CW
complex.

Proposition 5.7. Let 𝑋 be the associated CW complex of 𝑁 . If 𝑁 is orientable or
2𝐺 = 0, then 𝐶•(𝑁; 𝐺) is isomorphic to the cellular chain complex 𝐶cell

• (𝑋; 𝐺).

Proof. Note that under themap 𝑝𝑖 ∶ 𝑁𝑖 → 𝑋𝑖, the intersection number corresponds
to the sum of local degrees of the attaching map on the inverse image of 0 ∈ 𝐷𝜆−1.
In the orientable case the orientation of each 𝜕𝑁𝑖 may be chosen to be compatible
with the handles, so that degrees are counted correctly; otherwise they are only
correct modulo 2. ◻

Proposition 5.8. Suppose 𝑁 is orientable or 2𝐺 = 0. Then

• The chain complex 𝐶•(𝑁; 𝐺) computes the singular homology 𝐻•(𝑁; 𝐺).
• The cochain complex 𝐶•(𝑁; 𝐺), if defined, computes the singular cohomol-

ogy with compact support 𝐻•
c (𝑁; 𝐺).

Proof. The first statement is immediate; we prove the second one.
If 𝑁 is compact (that is, finite), then 𝐶•(𝑁; 𝐺) is precisely the dual of

𝐶•(𝑁; 𝐺), i.e. obtained by applying Hom𝐺(−, 𝐺). By [Hat01, Theorem 3.5], the
dual of the cellular complex computes the singular cohomology. Thus 𝐶•(𝑁; 𝐺)
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also computes the singular cohomology, which is equal to singular cohomology
with compact support.

In the general case, suppose that the handles in 𝑁 are attached one at a time.
This does not affect the chain complexes. We use the fact that

𝐻•
c (𝑋; 𝐺) ≃ ⟶lim𝐾 compact

𝐻•(𝑋, 𝑋 ⧵ 𝐾; 𝐺)

for any space 𝑋 [Hat01, below 3.33]. By local finiteness, for any compact 𝐾 ⊂ 𝑁 ,
there exists 𝑖 such that 𝐾 ⊂ (interior of 𝑁𝑖 in 𝑁). By excision we have 𝐻•(𝑁, 𝑁 ⧵
𝐾; 𝐺) ≃ 𝐻•(𝑁𝑖, 𝑁𝑖 ⧵ 𝐾; 𝐺). Thus

𝐻•
c (𝑁; 𝐺) ≃ ⟶lim𝐻•

c (𝑁𝑖; 𝐺).

But each 𝑁𝑖 is compact, hence 𝐻•
c (𝑁𝑖; 𝐺) ≃ 𝐻•(𝑁𝑖; 𝐺). Note also that

𝐶•(𝑁; 𝐺) ≃ ⟶lim𝐶•(𝑁𝑖; 𝐺), in the category of cochain complexes. It remains to
show that the functor 𝐻• (of cochain complexes) commutes with taking colimits,
which is a standard result in homological algebra. ◻

Remark 5.9. To compute the singular cohomology 𝐻•(𝑁; 𝐺), one may directly
dualise 𝐶•(𝑁; 𝐺) by applying Hom𝐺(−, 𝐺). ◃
Remark 5.10. This gives a beautiful geometrical interpretation of Poincaré duality
for a manifold 𝑀 , which states that 𝐻•(𝑀; 𝐺) and 𝐻•

c (𝑀; 𝐺) are dual to each
other, provided that 𝑀 is orientable or 2𝐺 = 0. Namely, for a finite handlebody 𝑁 ,
one defines in the obvious way the dual handlebody of 𝑁 , which is diffeomorphic
to 𝑁 , and its 𝜆-handles correspond to the (𝑛 − 𝜆)-handles of 𝑁 . Then the handle
chain complex of 𝑁 is isomorphic to the handle cochain complex of the dual of
𝑁 . ◃

6 Application to 2‐manifolds

This section gives an application of our theory of weak handlebodies. We will give
a classification of 2-manifolds with finite topology. In particular, this will imply
that ℝ2 has a unique smooth structure.

We start from the simplest case.

Theorem 6.1. Every simply connected boundaryless 2-manifold is diffeomorphic
to either the open disk or the 2-sphere.

This theorem is often proved as a consequence of the uniformisation theorem
of Riemann surfaces, using the fact that every Riemannian 2-manifold can be given
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isothermal coordinates so that it becomes a Riemann surface. Here we give it a new
and direct proof.

Proof. By (1.10) the manifold is diffeomorphic to a good 2-handlebody 𝑁 . By
(4.15) we may assume it is a good weak handlebody with only one 0-handle. Con-
sider the handle chain complex with ℤ2 coefficients

⋯ → 0 → 𝐶2(𝑁;ℤ2)
𝜕2−→ 𝐶1(𝑁;ℤ2)

𝜕1−→ ℤ2.

Since 𝐻0(𝑁;ℤ2) ≃ ℤ2, we have 𝜕1 = 0. Since 𝑁 is simply connected,
𝐻1(𝑁;ℤ2) = 0. Thus 𝜕2 is surjective. Note that the belt of a 1-handle is 𝑆0, i.e.
two points. Since 𝜕2 is surjective, these two points must intersect with either (a)
two different 2-handles, or (b) only one 2-handle in one point. Thus we have a
graph 𝐺, with vertices corresponding to the 2-handles, and edges corresponding to
1-handles in case (a). For each 1-handle in case (b), we add an “external edge” that
connects one vertex with “infinity”. This can be interpreted as an infinite sequence
of vertices and edges, so that 𝐺 is rigorously a graph. This graph is locally finite,
and does not have loops (i.e. edges whose endpoints are the same vertex).

We take a maximal tree in each connected component of 𝐺, and then apply
(2.3) in the form of (4.13). The effect is that these trees are collapsed. By the same
reason as above, the collapsed graph will not have loops. Thus the resulting graph
will have no edges at all. This means that the resulting weak handlebody has no
1-handles. Therefore, if it has a 2-handle, then it is the sphere; if not, then it is the
open disk. ◻

Corollary 6.2. ℝ2 has a unique smooth structure. ◻

This method generalises to prove the following.

Theorem 6.3. Every connected non-compact 2-manifold is diffeomorphic to a
weak (2, 1)-handlebody.

Proof. Similarly, the manifold is diffeomorphic to a good weak 2-handlebody 𝑁
with only one 0-handle. We construct something like a graph, denoted 𝐺, in the
same way, except that edges (1-handles) need not have vertices (2-handles) as their
endpoints. We ignore those edges with no endpoints for a while, and collapse max-
imal trees of connected components of the remaining part of 𝐺. The resulting thing
should be a collection of vertices, each possibly with some loops attached to it, and
some isolated edges.

We need to show that there are actually no vertices. Suppose the contrary. Then
at some stage, a first 2-handle will be attached to a (non-weak) (2, 1)-handlebody
with only one 0-handle. Since every edge is a loop, it follows that whenever the
image of the attaching map passes through a 1-handle, it passes through both sides
of it. By an elementary argument in combinatorics, if it passes through a 1-handle,
then it will pass through the whole boundary. This means that there will be no
boundary after this attaching, and thus 𝑁 must be compact, a contradiction. ◻
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Together with the following well-known result, the preceding theoremwill give
a classification for all boundaryless 2-manifolds with finite topology.

The following result will also be proved in our handle-theoretic way.

Theorem 6.4 (Classification of closed surfaces). Every connected closed 2-
manifold is diffeomorphic to one of the following.

(i) The orientable surface Σ𝑔 ∶= connected sum of 𝑔 tori, where 𝑔 = 0, 1, …
(where Σ0 ∶= 𝑆2), with Euler characteristic 𝜒(Σ𝑔) = 2 − 2𝑔.

(ii) The non-orientable surface Π𝑘 ∶= connected sum of 𝑘 projective planes,
where 𝑘 = 1, 2, … , with Euler characteristic 𝜒(Π𝑘) = 2 − 𝑘.

Proof. Let 𝑁 be a good handle decomposition. By (4.15), we assume that 𝑁 has
only one 0-handle. Taking the dual handlebody, we may assume 𝑁 has only one
2-handle. Let 𝑘 denote the number of 1-handles, and we prove by induction on 𝑘
that the diffeomorphism type is decided by orientability and 𝑘.

If 𝑘 = 0, then 𝑁 ≃ 𝑆2. If 𝑘 = 1, an easy argument yields 𝑁 ≃ ℝ𝑃 2. Next
we suppose 𝑘 ≥ 2. If we remove the 2-handle, we get a (2, 1)-handlebody with
boundary 𝑆1. If we remove one more 1-handle, one of the following happens.

(i) The boundary is two circles, and the surface is orientable. Thus the origi-
nal surface is recovered by attaching a cylinder 𝑆1 × 𝐼 along these circles, and the
orientability of the original surface decides how (regarding orientation) to attach
this cylinder. If we instead attach two 2-handles along these circles, then the Euler
characteristic will increase by 2. By the inductive hypothesis, the resulting surface
𝑆 is decided by 𝑘. By (3.15) and (3.14), if we take two disjoint disks on 𝑆 and re-
move their interiors, then the resulting surface𝑆′ is unique up to a diffeomorphism.
Thus our original surface is decided by 𝑘.

(ii) The boundary is two circles, and the surface is non-orientable. This case
is the same as (i) except that by (3.15), the two ways (regarding orientation) of
attaching a cylinder result in the same surface.

(iii) The boundary is one circle. In this case the original surface must be non-
orientable, and will be recovered by attaching aMöbius band along the circle. If we
instead attach a 2-handle along the circle, then the Euler characteristic increases by
1. By a same argument as in (i), it remains to show that the connected sum Σ𝑔 # Π1
is diffeomorphic to Π2𝑔 # Π1 ≃ Π2𝑔+1. This follows from the observation that
Π3 ≃ Σ1 # Π1. ◻

Now we may apply our results to non-compact manifolds. We say a manifold
has finite topology, if its (say ℝ-coefficient) homology groups are finite dimen-
sional.

Theorem 6.5 (Classification of 2-manifolds). Every connected boundaryless 2-
manifold with finite topology is diffeomorphic to either one of the closed surfaces
Σ𝑔 and Π𝑘, or one of them with a finite number of points removed.

Proof. The compact case follows from the preceding theorem. For the non-
compact case, by (6.3), the manifold must be a weak (2, 1)-handlebody with one
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0-handle. By the finiteness assumption, it must have finitely many 1-handles.
Thus it is the interior of a finite (2, 1)-handlebody, whose boundary is a compact
1-manifold, i.e. a finite number of circles. After attaching 2-handles along these
circles, it would become a closed surface, whence the result follows. ◻

The remaining case to a complete classification of 2-manifolds is that of weak
(2, 1)-handlebodies with one 0-handle and infinitely many 1-handles. However,
classifying them is very difficult, and even the open subsets of ℝ2 can not easily be
classified. On the other hand, we can obtain partial results. For example, using the
results in this paper, one can show that after multiplying by ℝ, all the orientable
ones will become diffeomorphic 3-dimensional manifolds.
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