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ABSTRACT

These notes are a gentle introduction to the theory of homotopical algebra,
also known as higher algebra, which has been intensively studied in the recent
works of Lurie, [Lur09] and [Lur17].

We begin by giving intuitions, and then, we study the theory of model
categories and infinity categories, as well as the connections between them.
Finally, we review homological algebra from the higher point of view.
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1 Introduction

In algebraic topology, we have seen the following analogy between topology and
homological algebra.

Topology Homological Algebra
spaces chain complexes over 𝑅

homotopies chain homotopies
homotopy equivalences chain homotopy equivalences

homotopy groups 𝜋𝑛(𝑋) ≃ [𝑆𝑛, 𝑋] homology groups 𝐻𝑛(𝑋) ≃ [“𝑆𝑛”, 𝑋]
weak homotopy equivalences quasi-isomorphisms

CW approximation projective/injective resolutions
homotopy category hCW derived category D(𝑅)

suspension and looping Σ ⊣ Ω shifting [1] ⊣ [−1]
…… ……

(𝑅 is a commutative ring; [ , ] denotes the set of homotopy classes of maps; and
“𝑆𝑛” denotes the chain complex whose only non-zero term is 𝑅 at its 𝑛-th place.)

Homotopical algebra is a language that unifies these two theories. It is a general
theory that also applies to many other situations.

What is an∞‐category?
The language of ∞-categories is the modern language for homotopical algebra. It
encodes data describing the “higher structures” of a category that can not be seen
in ordinary category theory.

Roughly speaking, an ∞-category consists of a class of objects, a class of mor-
phisms between them, and moreover, there are higher morphisms between these
morphisms. Namely, there are 2-morphisms between ordinary morphisms, which
can be seen as “homotopies” between morphisms. There are 3-morphisms between
2-morphisms, which can be seen as “homotopies between homotopies”, and so on.

We will not give the definition for an ∞-category until a few sections later,
since defining them will require some preliminary work. However, the following
examples will give us a first impression of what an ∞-category looks like.

Example 1.1. Consider the category Top of topological spaces. Seen as an ∞-
category, it will consist of the following data.

• Objects: topological spaces.
• 1-Morphisms: continuous maps between topological spaces.
• 2-Morphisms (between 1-morphisms): homotopies between two maps with

the same source and target.
• 3-Morphisms (between 2-morphisms): homotopies between homotopies of

maps.
• …… ◃
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Example 1.2. For a commutative ring 𝑅, consider the category Ch𝑅 of cochain
complexes over 𝑅. As an ∞-category, it will consist of the following data.

• Objects: cochain complexes over 𝑅.
• 1-Morphisms: chain maps between cochain complexes.
• 2-Morphisms: chain homotopies between chain maps.
• 3-Morphisms: chain homotopies between chain homotopies.
• …… ◃

Example 1.3. For a topological space 𝑋, consider the fundamental groupoid of
𝑋, denoted by Π(𝑋). As an ∞-category, it will consist of the following data.

• Objects: points of 𝑋.
• 1-Morphisms: paths connecting two points.
• 2-Morphisms: homotopies between paths, fixing endpoints.
• 3-Morphisms: homotopies between homotopies.
• ……

Note that the associativity law 𝑓 ∘ (𝑔 ∘ ℎ) = (𝑓 ∘ 𝑔) ∘ ℎ does not hold in this example;
it only holds “up to homotopy”. This is one of the difficulties we will encounter in
studying ∞-categories. ◃

Homotopy categories

In many cases, ∞-categories arise as homotopy categories of ordinary categories
with certain extra data. We will now demonstrate this procedure through a concrete
example.
Definition 1.4. The category hTop consists of

• Objects: topological spaces.
• Morphisms: homotopy classes of maps.

A key observation is that hTop is obtained from Top by “inverting the homotopy
equivalences”. Let us make this precise.
Definition 1.5. A category with weak equivalences is a pair (C,W), where C is
a category, andW ⊂ Mor(C) is a class of morphisms, such that

• All isomorphisms of C are inW.
• W satisfies two-out-of-three: for any diagram

•

• •
𝑔

𝑔∘𝑓

𝑓

in C, if two of the arrows 𝑓, 𝑔, 𝑔 ∘ 𝑓 are inW, then so is the third.
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For example, the pair (Top,HoEq) is a category with weak equivalences, where
HoEq is the class of homotopy equivalences in Top.

Definition 1.6. Let (C,W) be a category with weak equivalences. The localisation
of C with respect toW is a category C[W−1], together with a functor C → C[W−1],
with the following universal property:

• For any functor 𝐹 ∶ C → D sending W to isomorphisms, there is a unique
functor ̃𝐹 ∶ C[W−1] → D up to a natural isomorphism, such that the diagram

C D

C[W−1]

𝐹

∃! ̃𝐹

commutes up to a natural isomorphism.

Roughly speaking, the category C[W−1] is obtained from C by making all the
arrows in W invertible. In fact, this idea can be formulated into an explicit con-
struction of the localisation C[W−1].

Construction 1.7. Let (C,W) be a category with weak equivalences. Define
C[W−1] to be the category with the same objects as C, with HomC[W−1](𝑋, 𝑌 ) the
set of all possible sequences

𝑋 → 𝑍1 ← 𝑍2 → ⋯ ← 𝑍𝑛 → 𝑌

in C, where all arrows going leftward are in W, quotiented by the following rela-
tions: identity arrows can be dropped; adjacent arrows pointing to the same direc-
tion can be composed; adjacent arrows pointing to different directions can also be
dropped if they represent the same morphism. It is then almost obvious that our
construction does give a localisation with the desired universal property.

The only problem is that HomC[W−1](𝑋, 𝑌 ) may be too large to be a set; how-
ever, we do not care about this problem for now, and it is easily overcome by switch-
ing to a larger universe. ◃

Proposition 1.8. hTop ≃ Top[HoEq−1].

Proof. The natural functor Top → hTop sends the class HoEq to isomorphisms.
Therefore, it induces a functor

Top[HoEq−1] → hTop,

which is clearly full and essentially surjective. To prove that it is faithful, suppose
𝑓, 𝑔 ∶ 𝑋 → 𝑌 are morphisms in Topwhich are sent to the same morphism in hTop.
Then 𝑓 and 𝑔 are homotopic. Let 𝐻 be the homotopy. Then in Top[HoEq−1], we
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have
𝑓 = 𝑋

𝑖0−→ 𝑋 × 𝐼 𝐻−→ 𝑌

= 𝑋
𝑖0−→ 𝑋 × 𝐼

pr1−−→ 𝑋
pr1←−− 𝑋 × 𝐼 𝐻−→ 𝑌

= 𝑋
𝟙𝑋−−→ 𝑋

pr1←−− 𝑋 × 𝐼 𝐻−→ 𝑌

= 𝑋
pr1←−− 𝑋 × 𝐼 𝐻−→ 𝑌

= 𝑔,

where pr1 denotes projection onto the first factor, and 𝑖0 denotes the obvious inclu-
sion. ◻

In fact, we will see that localisation gives rise to higher structure. In this ex-
ample, the ordinary category hTop is just the first layer of information that we get
from localisation. The full information is retained in an ∞-category, which is, in
this case, the ∞-category Top given in (1.1).

In this case, the higher structure has a very clear description by homotopies
and higher homotopies. One might expect that in similar scenarios, such as in
homological algebra, when we try to invert the quasi-isomorphisms, the resulting
∞-category can also be described in terms of homotopies and higher homotopies.
In fact, this will be one of our main goals, and will motivate the notion of a model
category.

Model categories are categories with weak equivalences, together with some
extra structures that will help us substantially in computations related to ∞-
categories obtained by localisation. Here is our mind-map.

model category
(C,W,Cof, Fib)

(C,W) ∞-category C[W−1]

ordinary category C[W−1]

present (easier)
find a structure

localise
(hard to describe)

forget

A naive attempt on higher categories

We will now try to give a simple, but “wrong”, definition of higher categories.
Keeping in mind that higher categories are just categories with higher dimensional
arrows, we will formulate this idea into a rigorous definition.

Definition 1.9. A monoidal category is a category C, together with

• An object 1 ∈ C, called the unit.
• A functor ⊗∶ C × C → C,
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such that there are natural isomorphisms

𝑎∶ (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 ∼→ 𝑋 ⊗ (𝑌 ⊗ 𝑍),
𝑙 ∶ 1 ⊗ 𝑋 ∼→ 𝑋,
𝑟∶ 𝑋 ⊗ 1 ∼→ 𝑋,

so that the diagrams

(𝑋 ⊗ 𝑌 ) ⊗ (𝑍 ⊗ 𝑊 )

((𝑋 ⊗ 𝑌 ) ⊗ 𝑍) ⊗ 𝑊 𝑋 ⊗ (𝑌 ⊗ (𝑍 ⊗ 𝑊 ))

(𝑋 ⊗ (𝑌 ⊗ 𝑍)) ⊗ 𝑊 𝑋 ⊗ ((𝑌 ⊗ 𝑍) ⊗ 𝑊 ) ,

(𝑋 ⊗ 1) ⊗ 𝑌 𝑋 ⊗ (1 ⊗ 𝑌 )

𝑋 ⊗ 𝑌 ,

1 ⊗ 1

1
𝑟𝑙

are commutative for any 𝑋, 𝑌 , 𝑍, 𝑊 ∈ C.

The first diagram is also called the pentagon axiom. One can prove that even if
we have more than 4 objects, the pentagon axiom ensures that the “associahedron”
diagrams are commutative.

For example, the following triples (C, ⊗, 1) are all examples of monoidal cate-
gories:

• (Set, ×, ∗), where ∗ denotes the singleton set.
• (Set, ⊔, ∅), where ⊔ denotes disjoint union.
• (any category with products, ×, ∗), where ∗ denotes the terminal object, i.e.

the empty product.
• (any category with coproducts, ⊔, ∅), where ∅ denotes the initial object, i.e.

the empty coproduct.
• (Ch𝑅, ⊗, 𝑅), where the unit 𝑅 is concentrated in degree 0, and the tensor

product is given by

(𝐶 ⊗ 𝐷)𝑛 ≔ ⨁𝑝+𝑞=𝑛
𝐶𝑝 ⊗𝑅 𝐷𝑞 .

Definition 1.10. Let V be a monoidal category. A V-enriched category C consists
of the following data.

• A class of objects.
• For any 𝑋, 𝑌 ∈ C, a hom-object HomC(𝑋, 𝑌 ) ∈ V.
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• For any 𝑋, 𝑌 , 𝑍 ∈ C, a composition map

∘ ∶ HomC(𝑌 , 𝑍) ⊗ HomC(𝑋, 𝑌 ) → HomC(𝑋, 𝑍)

in V.
• For any 𝑋 ∈ C, an identity morphism

𝟙𝑋 ∶ 1 → HomC(𝑋, 𝑋)

in V. We think of 𝟙𝑋 as an “element” of HomC(𝑋, 𝑋), but since this object
is not a set, we consider morphisms 1 → HomC(𝑋, 𝑋) as its “elements”.

They satisfy the following conditions.

• Composition is associative.
• Composing with the identity morphism gives the original morphism.

We leave it to the reader to formulate these two axioms rigorously.

For example, an ordinary category is a category enriched over (Set, ×, ∗).
When we have a forgetful functor V → Set preserving the monoidal structure,

we may think of a V-enriched category as a category with extra structures, as in the
following examples.

Example 1.11. The category Top is enriched over itself, since for 𝑋, 𝑌 ∈ Top,
the set HomTop(𝑋, 𝑌 ) can be given a natural topology, namely the compact open
topology, so that composition is continuous. ◃

Example 1.12. The category Ch𝑅 is enriched over itself. For 𝑋, 𝑌 ∈ Ch𝑅, we
define a cochain complex ℋom(𝑋, 𝑌 ) by

ℋom(𝑋, 𝑌 )𝑛 ∶= {𝑓 = {𝑓 𝑘 ∶ 𝑋𝑘 → 𝑌 𝑘+𝑛}𝑘∈ℤ},

where 𝑓 is not necessarily a chain map, and the differential is given by

𝑑𝑓 ∶= 𝑑 ∘ 𝑓 − (−1)deg 𝑓 𝑓 ∘ 𝑑.

The chain maps are the 0-cocycles of this cochain complex. Such a cocycle corre-
sponds to a chain map from the unit 1 ∈ Ch𝑅 to this cochain complex, which is, in
a sense, an “element” of this cochain complex. ◃

Example 1.13. The category Cat of all (small) categories is enriched over itself.
This is because for any two categories 𝑋, 𝑌 , we may form their functor category
Fun(𝑋, 𝑌 ), whose objects are functors 𝑋 → 𝑌 , and morphisms are natural trans-
formations between these functors. ◃

Using the language of enriched categories, we can now give a first definition of
higher categories.
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Definition 1.14. A strict 2-category is a category enriched over Cat.

For example, Cat itself is a strict 2-category. We may think of functors as its
1-morphisms, and natural transformations as its 2-morphisms.

Any Top-enriched category can be regarded as a strict 2-category, since we
may replace its hom-spaces by their fundamental groupoids. In this case, the 2-
morphisms are just paths connecting the 1-morphisms in the hom-space. For ex-
ample, Top itself is a strict 2-category. Its 2-morphisms are homotopies between
maps.

However, for a topological space 𝑋, the fundamental groupoid Π(𝑋) is NOT
a strict 2-category. This is because, as we have mentioned, the composition in
Π(𝑋) is not strictly associative. This indicates that our definition is too strict, and
is somehow “wrong”.

Definition 1.15. Inductively, we define a strict 𝒏-category as a category enriched
over the category of (𝑛 − 1)-categories.

This gives rise to a definition of an ∞-category, which is too strict and will not
be used in the future.

Definition 1.16. A strict 𝝎-category is a sequence

C1 ↪ C2 ↪ C3 ↪ ⋯ ,

where C𝑛 is a strict 𝑛-category, such that C𝑛−1 is obtained from C𝑛 by discarding
all the 𝑛-arrows.

(𝑛, 𝑟)‐categories
Although we have not defined 𝑛-categories and ∞-categories in general, we now
have some intuitive ideas about what they are, and we can talk about them in a
semi-rigorous way.

Definition 1.17. Let 0 ≤ 𝑟 ≤ 𝑛 and 𝑛 > 0. An (𝒏, 𝒓)-category is an 𝑛-category in
which all 𝑟 + 1, 𝑟 + 2, … , 𝑛-morphisms are invertible.

Since we are not only talking about strict 𝑛-categories, “invertible” actually
means “invertible up to a higher homotopy”, or in other words, “having a homotopy
inverse”. Let us look at some examples.

• An ordinary category is a (1, 1)-category.
• An ordinary groupoid is a (1, 0)-category.
• The strict 𝑛-categories defined above are (𝑛, 𝑛)-categories. A strict 𝜔-

category is an (∞, ∞)-category.
• (∞, 0)-categories are called ∞-groupoids. They are very important objects,

since they correspond to homotopy types. In fact, there is a theory called
Homotopy Type Theory [HoTT], which aims to rebuild the foundations of
mathematics, using ∞-groupoids instead of sets as the basic building blocks.
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• A category enriched over the category of (𝑛, 𝑟)-categories is an (𝑛+1, 𝑟+1)-
category.

• Top is an (∞, 1)-category, since every homotopy is invertible. Namely, a
homotopy composed with its own inverse is homotopic to the identity ho-
motopy.

• Ch𝑅 is an (∞, 1)-category, since composition of homotopies is addition of
maps between cochain complexes, and for a chain homotopy, adding its addi-
tive inverse gives the zero map, which corresponds to the identity homotopy.

• For a topological space 𝑋, the fundamental groupoid Π(𝑋) is an example of
an ∞-groupoid. It describes the homotopy type of 𝑋.

Regarding the fifth point, we may extend the notion of (𝑛, 𝑟)-categories to the
case 𝑛 < 1. In fact, we will see in the future that the correct notions are as follows.

• (0, 0)-categories are sets.
• (0, 1)-categories are partially ordered sets.
• (−1, 0)-categories are either ∅ or singleton sets. In other words, they are

truth values.
• (−2, 0)-categories are singleton sets.
Higher category theorists believe that the bottom layer should be −2, and they

think that it is more natural to renumber everything so that −2 becomes 0. Thus, in
the skyscraper of mathematics, logic lives on the 1st floor; set theory lives on the
2nd floor; and category theory lives on the 3rd floor.

From this viewpoint, it seems more natural to consider all the floors as a whole.
That is possibly why homotopy type theorists wish to replace set theory by higher
category theory as the foundation of mathematics.

2 Model categories

Model categories are categories with weak equivalences, together with some extra
data, namely a class Cof of cofibrations, and a class Fib of fibrations. This extra
data will help us in computations related to ∞-categories. Recall that we have a
mind-map

model category
(C,W,Cof, Fib)

(C,W) ∞-category C[W−1]

ordinary category C[W−1]

present (easier)
find a structure

localise
(hard to describe)

forget

Model categories have two main advantages in such computations:
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• Homotopies between morphisms are easily described. Normally we only
know which morphisms are weak equivalences; we do not know which mor-
phisms become homotopic after localisation. However, in model categories,
we can see such homotopies, and we can even see all the higher dimensional
homotopies, just like we are working with topological spaces. As a result, the
localisation C[W−1] will have a good description as the homotopy category
of C.

• Derived functors are very easy to compute. They will be defined later in this
section. For example, homotopy limits and colimits are examples of derived
functors.

Definition and examples

Recall from algebraic topology that a map 𝑝∶ 𝑋 → 𝑌 of topological spaces is
called aHurewicz fibration if for any space 𝐴 and any diagram (without the dashed
arrow)

𝐴 × {0} 𝑋

𝐴 × 𝐼 𝑌 ,

𝑝

there exists a dashed arrow making the diagram commute. A map 𝑖∶ 𝐴 → 𝐵 is
called a Hurewicz cofibration if for any space 𝑌 and any diagram

𝐴 𝑌 𝐼

𝐵 𝑌 {0} ,
𝑖

there exists a dashed arrow making the diagram commute, where 𝑌 𝐼 denotes the
space of all maps 𝐼 → 𝑌 equipped with the compact open topology.
Definition 2.1. Let C be a category, and let 𝐽 ⊂ Mor(C) be a class of morphisms.
We say that a map 𝑝∶ 𝑋 → 𝑌 in C has the right lifting property against 𝐽 , if for
any diagram

𝐴 𝑋

𝐵 𝑌
𝑝

inC, where the map𝐴 → 𝐵 is in 𝐽 , there exists a dashed arrowmaking the diagram
commute. The class of all arrows 𝑝 with this property is denoted by RLP(𝐽 ).

Dually, a map 𝑖∶ 𝐴 → 𝐵 in C has the left lifting property against 𝐽 , if for
any diagram

𝐴 𝑋

𝐵 𝑌
𝑖
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inC, where themap𝑋 → 𝑌 is in 𝐽 , there exists a dashed arrowmaking the diagram
commute. The class of all arrows 𝑖 with this property is denoted by LLP(𝐽 ).

For example, we have by definition

{Hurewicz fibrations} = RLP{𝐴 × {0} ↪ 𝐴 × 𝐼},
{Hurewicz cofibrations} = LLP{𝑌 𝐼 ↠ 𝑌 {0}}.

As an exercise, the reader can show that RLP(LLP(RLP(𝐽 ))) = RLP(𝐽 ), so that
if we put R ≔ RLP(𝐽 ) and L ≔ LLP(RLP(𝐽 )), then L = LLP(R) and R = RLP(L).

Definition 2.2. A weak factorisation system is a triple (C, L,R), where C is a
category, and L,R ⊂ Mor(C) are two classes of morphisms, such that

• L = LLP(R) and R = RLP(L).
• Every morphism 𝑓 ∶ 𝐴 → 𝐵 in C can be factored into

𝐴 𝑙−→ 𝑋 𝑟−→ 𝐵,

where 𝑙 ∈ L and 𝑟 ∈ R. Moreover, we require that the factorisation is
functorial in 𝑓 .

For example, let HCof, HFib and HoEq denote the class of closed Hurewicz
cofibrations, the class of Hurewicz fibrations, and the class of homotopy equiv-
alences, respectively. We will see that the triples (Top,HCof ∩ HoEq,HFib) and
(Top,HCof,HFib ∩ HoEq) both form weak factorisation systems.

Proposition 2.3. Let (C, L,R) be a weak factorisation system.

• L and R contain all isomorphisms in C.
• L and R are closed under composition.
• L is preserved by pushouts and R is preserved by pullbacks.

Proof. Exercise for the reader. ◻

Definition 2.4. A model category (C,W,Cof, Fib) is a category C with three dis-
tinguished classes of morphismsW,Cof, Fib ⊂ Mor(C), such that

• C admits all small colimits and limits.
• (C,W) is a category with weak equivalences.
• (C,Cof ∩W, Fib) is a weak factorisation system.
• (C,Cof, Fib ∩W) is a weak factorisation system.

We shall now introduce some terminology.

• Morphisms inW are called weak equivalences.
• Morphisms in Cof are called cofibrations.



2 Model categories 13

• Morphisms in Fib are called fibrations.
• Morphisms in Cof∩W are called trivial cofibrations, or acyclic cofibrations.
• Morphisms in Fib ∩W are called trivial fibrations, or acyclic fibrations.
• An object 𝑋 ∈ C is cofibrant if the map ∅ → 𝑋 is a cofibration, where

∅ denotes the initial object of C. The initial object exists because it is the
empty colimit.

• An object 𝑋 ∈ C is fibrant if the map 𝑋 → ∗ is a fibration, where ∗ denotes
the terminal object of C. The terminal object exists because it is the empty
limit.

Note that Cof and Fib determine each other, since in a weak factorisation sys-
tem, the two classes of morphisms determine each other. Note also that cofibrations
and trivial cofibrations are preserved by pushouts, and fibrations and trivial fibra-
tions are preserved by pullbacks.

Let us look at some examples. It is often very tedious to verify the axioms of a
model category, so we will present the results without giving proofs.
Example 2.5. The Hurewicz model structure on Top is defined as follows.

• W is the class of homotopy equivalences.
• Cof is the class of closed Hurewicz cofibrations.
• Fib is the class of Hurewicz fibrations. ◃

Example 2.6. The Quillen model structure on Top is defined as follows.
• W is the class of weak homotopy equivalences.
• Fib ∶= RLP{𝐷𝑛 × {0} ↪ 𝐷𝑛 × 𝐼 ∣ 𝑛 ≥ 0} is the class of Serre fibrations.
• Fib∩W = RLP{𝑆𝑛−1 ↪ 𝐷𝑛 ∣ 𝑛 ≥ 0}. This is an alternative characterisation

of Fib ∩W.
• Cof is determined by Cof = LLP(Fib ∩W). In particular, the maps 𝑆𝑛−1 ↪

𝐷𝑛 are cofibrations.
In this model category, every topological space is fibrant. All CW complexes are
cofibrant, because cofibrations are preserved by pushouts, and preserved by com-
position and sequential colimits. ◃

In the sequel, we will always use the Quillen model structure, instead of the
Hurewicz model structure.
Example 2.7. The projective model structure on Ch𝑅 is defined as follows.

• W is the class of quasi-isomorphisms.
• Fib is the class of degreewise surjections.

In this model category, every cochain complex is fibrant. Any bounded-above
cochain complex consisting of projective modules, e.g. a projective resolution of
an 𝑅-module, is cofibrant. ◃
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Example 2.8. The injective model structure on Ch𝑅 is defined as follows.

• W is the class of quasi-isomorphisms.
• Cof is the class of degreewise injections.

In this model category, every cochain complex is cofibrant. Any bounded-below
cochain complex consisting of injective modules, e.g. an injective resolution of an
𝑅-module, is fibrant. ◃

As can be seen in these examples, cofibrant-fibrant objects, i.e. objects that
are both cofibrant and fibrant, are special objects that behave like CW complexes
or projective/injective resolutions. We will soon see that these objects have much
better properties than others. However, it turns out that every object is weakly
equivalent to a cofibrant-fibrant object.

Construction 2.9. Let C be a model category. By the axioms for a model category,
for any 𝑋 ∈ C, we may factorise the map ∅ → 𝑋 into

∅ ∈Cof−−−→ 𝑄𝑋 ∈Fib∩W−−−−−→ 𝑋.

Then 𝑄𝑋 is a cofibrant object that is weakly equivalent to 𝑋. Moreover, 𝑄 is a
functor, and is called the cofibrant replacement functor.

Dually, we may factorise the map 𝑋 → ∗ into

𝑋 ∈Cof∩W−−−−−−→ 𝑅𝑋 ∈Fib−−−→ ∗.

Then 𝑅𝑋 is a fibrant object that is weakly equivalent to 𝑋. Moreover, 𝑅 is a
functor, and is called the fibrant replacement functor.

More generally, any functor 𝑄∶ C → C (resp. 𝑅∶ C → C) with the properties
described above will be called a cofibrant replacement (resp. fibrant replace-
ment) functor.

As an exercise, the reader can show that the objects 𝑅𝑄𝑋 and 𝑄𝑅𝑋 are both
cofibrant-fibrant. ◃

Homotopy category

In this section, we aim to recover “homotopies” from the axioms of a model cate-
gory. In topology, a homotopy between maps 𝑋 → 𝑌 is given by a map

𝑋 × 𝐼 → 𝑌 , or 𝑋 → 𝑌 𝐼 .

In a model category, we define homotopies by considering objects that behave like
𝑋 × 𝐼 or 𝑌 𝐼 .

Definition 2.10. Let C be a model category, and let 𝑋 ∈ C be an object.
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• A cylinder object Cyl(𝑋) for 𝑋 is a factorisation of the codiagonal map
∇𝑋 ∶= (𝟙, 𝟙)∶ 𝑋 ⊔ 𝑋 → 𝑋 as

𝑋 ⊔ 𝑋 𝑋

Cyl(𝑋) .

∇𝑋

Cof∋𝑖 𝑝∈W

The cylinder object is said to be very good if moreover 𝑝 ∈ Fib ∩W.
• A path space object Path(𝑋) for 𝑋 is a factorisation of the diagonal map

Δ𝑋 ∶= (𝟙, 𝟙)∶ 𝑋 → 𝑋 × 𝑋 as

𝑋 𝑋 × 𝑋

Path(𝑋) .

Δ𝑋

W∋𝑖 𝑝∈Fib

The path space object is said to be very good if moreover 𝑖 ∈ Cof ∩W.

These are objects that behave like 𝑋 × 𝐼 and 𝑋𝐼 in topology, respectively. By
the axioms of a model category, we can always find very good cylinder and path
space objects for any object 𝑋.
Definition 2.11. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be two morphisms in C.

• A left homotopy from 𝑓 to 𝑔 is a morphism Cyl(𝑋) → 𝑌 , such that the
diagram

𝑋 Cyl(𝑋) 𝑋

𝑌

𝑖0

𝑓

𝑖1

𝑔

commutes. In this case, we say that 𝑓 and 𝑔 are left homotopic.
• A right homotopy from 𝑓 to 𝑔 is a morphism 𝑋 → Path(𝑌 ), such that the

diagram
𝑋

𝑌 Path(𝑌 ) 𝑌

𝑓 𝑔

𝑝0 𝑝1

commutes. In this case, we say that 𝑓 and 𝑔 are right homotopic.
In topology, left homotopies are equivalent to right homotopies. We will soon

show that this is also true for cofibrant-fibrant objects, but before that, let us get
familiar with the axiomatic way of doing homotopy theory through an example.
Example 2.12. If 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 are left homotopic maps, and 𝑔0, 𝑔1 ∶ 𝑌 → 𝑍
are left homotopic maps, then 𝑔0 ∘ 𝑓0 and 𝑔1 ∘ 𝑓1 are left homotopic, provided that
the canonical very good cylinder objects, i.e. those obtained from the functorial
factorisation of the codiagonal maps of 𝑋 and 𝑌 , are used.
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Proof. In topology, we prove this obvious fact by considering the composition

𝑋 × 𝐼 → 𝑋 × 𝐼 × 𝐼 → 𝑌 × 𝐼 → 𝑍,

where the first map is induced from the diagonal map 𝐼 ↪ 𝐼 × 𝐼 , which is a path
connecting the vertices (0, 0) and (1, 1).

In the model category setting, we wish to get a series of maps

Cyl(𝑋) → Cyl(Cyl(𝑋)) → Cyl(𝑌 ) → 𝑍,

which gives the desired homotopy. Since we are using the canonical cylinder ob-
jects, we can regard Cyl as a functor. This gives the map Cyl(Cyl(𝑋)) → Cyl(𝑌 ).
Thus, the only problem now is to construct the first map Cyl(𝑋) → Cyl(Cyl(𝑋)),
as “a path connecting the vertices (0, 0) and (1, 1)”. We do this by lifting in the
diagram

𝑋 ⊔ 𝑋 Cyl(Cyl(𝑋))

Cyl(𝑋) 𝑋 .
Cof∋𝑖

(𝑖0𝑖0,𝑖1𝑖1)

∈Fib∩W

The reader can now readily check that the composition map Cyl(𝑋) → 𝑍 does
give a left homotopy between 𝑔0 ∘ 𝑓0 and 𝑔1 ∘ 𝑓1. ◻

Proposition 2.13. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be two maps. If 𝑋 is cofibrant and 𝑌 is
fibrant, then 𝑓 and 𝑔 are left homotopic if and only if they are right homotopic. In
this case, a homotopy exists for any cylinder object of 𝑋 and for any path space
object of 𝑌 .

Proof. Suppose that ℎ∶ Cyl(𝑋) → 𝑌 be a left homotopy from 𝑓 to 𝑔. The idea is
to construct a map 𝑘 “from 𝑋 × 𝐼 to 𝑌 𝐼”, as depicted in the diagram below.

𝑓

𝑓 𝑓

𝑔left homotopy
ℎ

right homotopy
𝟙𝑓 = 𝑖 ∘ 𝑓

left homotopy
𝟙𝑓 = 𝑓 ∘ 𝑝

fill
⟹

𝑓

𝑓 𝑓

𝑔ℎ

𝟙𝑓

𝟙𝑓

the right homotopy
that we want𝑘

We want to transport the right homotopy 𝟙𝑓 along the left homotopies ℎ and 𝟙𝑓
given at the endpoints. This idea is realised by lifting in the diagram

𝑋 Path(𝑌 )

Cyl(𝑋) 𝑌 × 𝑌 .
Cof∩W∋𝑖0

𝑖∘𝑓

∈Fib

(𝑓 ∘𝑝,ℎ)

𝑘
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The reader should check the details implicit in the diagram, making use of the
assumption that 𝑋 is cofibrant. The composition

𝑋
𝑖1−→ Cyl(𝑋) 𝑘−→ Path(𝑌 )

then gives the desired right homotopy.
Moreover, note that the path object Path(𝑌 ) above was chosen arbitrarily.

Therefore, being left homotopic implies being right homotopic with respect to any
path object.

Dually, one shows that being right homotopic implies being left homotopic with
respect to any cylinder object. ◻

This proposition shows that homotopy is a really nice property to work with,
at least for the cofibrant-fibrant objects. As an exercise, the reader can show that
under the above conditions, being homotopic is an equivalence relation for maps
𝑋 → 𝑌 . Thus, we can take homotopy classes of maps and define the homotopy
category.

Definition 2.14. The homotopy category of C is a category Ho(C), with
• Objects: the cofibrant-fibrant objects of C.
• Morphisms: homotopy classes of morphisms in C.

Do not forget that we study model categories in order to study localisations.
And here is the key result:

Theorem 2.15. We have an equivalence of categories

Ho(C) ≃ C[W−1].

The proof of this theorem depends on the following fact.

Proposition 2.16 (Whitehead’s Theorem). Suppose𝑋, 𝑌 ∈ C are cofibrant-fibrant
objects. Then a morphism 𝑓 ∶ 𝑋 → 𝑌 is a weak equivalence if and only if it is a
homotopy equivalence, i.e. it has a homotopy inverse.

Proof. 1. If 𝑓 ∈ Fib ∩W, then 𝑓 has a right inverse, as we can lift in the diagram

∅ 𝑋

𝑌 𝑌 .
Cof∋ 𝑓∈Fib∩W𝑔

We have to show that 𝑔 is a homotopy inverse of 𝑓 , and it suffices to show that 𝑔 ∘𝑓
is homotopic to 𝟙𝑋 . This is done by lifting in the diagram

𝑋 ⊔ 𝑋 𝑋

Cyl(𝑋) 𝑌 .

(𝑔∘𝑓 ,𝟙)

Cof∋ 𝑓∈Fib∩W
𝑓∘𝑝
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2. If 𝑓 ∈ Cof ∩W, then a dual argument will do.
3. For a general 𝑓 ∈ W, we may factorise it into a cofibration and a trivial

fibration. The cofibration is automatically trivial by two-out-of-three. ◻

Proof of (2.15). By (2.16), the functor

C
𝑅𝑄−−→ Ccf → Ho(C)

sends W to isomorphisms, inducing a functor from C[W−1] to Ho(C), which is
clearly full and essentially surjective. We leave it to the reader to show that it is
faithful (in the same way as we proved (1.8)). ◻

Remark 2.17. We have noted that Ho(C) is the first layer of information obtained
from localisation. The full information is retained in an (∞, 1)-category. We will
see that model categories are capable of providing such higher structures, through a
construction called a framing. This construction is analogous to 𝑋×Δ𝑛 and 𝑋Δ𝑛 , in
order to describe higher homotopies in a model category. See [Hov99, Chapter 5]
for details. ◃

Derived functors

Recall that in homological algebra, derived functors are a way of passing a functor
between abelian categories 𝐹 ∶ A → B to a functor between derived categories
D(A) → D(B). This is a special case of the following construction.

For a model category C, denote the subcategory of C consisting of cofibrant
(resp. fibrant, cofibrant-fibrant) objects by Cc (resp. Cf, Ccf).
Definition 2.18. Let 𝐹 ∶ C → D be a functor, where C is a model category and D
is a category with weak equivalences.

• If 𝐹 preserves weak equivalences, then 𝐹 induces a functor

Ho(𝐹 )∶ Ho(C) → Ho(D).

This is called the total derived functor of 𝐹 .
• If 𝐹 |Cc preserves weak equivalences, then there is a diagram

C Cc D

Ho(C) Ho(C) Ho(D) ,

𝑄 𝐹

𝕃𝐹

which commutes up to natural isomorphisms, where 𝑄 is any cofibrant re-
placement functor of C. The functor 𝕃𝐹 is called the left derived functor of
𝐹 . For any 𝑋 ∈ C, we have the formula

𝕃𝐹 (𝑋) ≃ 𝐹 (𝑄𝑋)

in Ho(D).
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• If 𝐹 |Cf preserves weak equivalences, then there is a diagram

C Cf D

Ho(C) Ho(C) Ho(D) ,

𝑅 𝐹

ℝ𝐹

which commutes up to natural isomorphisms, where 𝑅 is any fibrant replace-
ment functor of C. The functor ℝ𝐹 is called the right derived functor of 𝐹 .
For any 𝑋 ∈ C, we have the formula

ℝ𝐹 (𝑋) ≃ 𝐹 (𝑅𝑋)

in Ho(D).

Example 2.19. In the category of cochain complexes with the injective model
structure, the cofibrant replacement functor is taking projective resolutions. Thus
the left derived functors defined above coincides with the standard definition in
homological algebra.

Similarly, in the category of cochain complexes with the projectivemodel struc-
ture, the fibrant replacement functor is taking injective resolutions, which defines
right derived functors. ◃

Derived adjunctions

As we have seen, not all functors have derived functors. In this subsection, we give
a criterion for an adjoint pair to both have derived functions, so that their derived
functors also form an adjoint pair.

Definition 2.20. Let C,D be two model categories, and let (𝐹 ⊣ 𝐺) be a pair of
adjoint functors between them. Then (𝐹 ⊣ 𝐺) is called a Quillen adjunction if 𝐹
preserves cofibrations and trivial cofibrations.

Note that 𝐹 preserves cofibrations iff 𝐺 preserves trivial fibrations, and 𝐹 pre-
serves trivial cofibrations iff 𝐺 preserves fibrations.

Lemma 2.21 (Ken Brown). Let 𝐹 ∶ C → D be a functor between two model cat-
egories. If 𝐹 |Cc preserves trivial cofibrations, then 𝐹 |Cc preserves weak equiva-
lences.

Proof. Omitted. See [Hov99, Lemma 1.1.12]. ◻

Corollary 2.22. If (𝐹 ⊣ 𝐺) is a Quillen adjunction between two model categories
C and D, then 𝕃𝐹 and ℝ𝐺 exist. Moreover, (𝕃𝐹 ⊣ ℝ𝐺) is an adjunction between
the homotopy categories Ho(C) and Ho(D).
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Proof. By Ken Brown’s lemma, the derived functors 𝕃𝐹 and ℝ𝐺 exist. To show
that they form an adjunction, we have to show that the isomorphism

HomC(𝐹 𝑋, 𝑌 ) ≃ HomD(𝑋, 𝐺𝑌 )

preserves homotopy classes for any 𝑋 ∈ Dcf and 𝑌 ∈ Ccf. This requires a little
more work and we shall omit the details. See [Hov99, Lemma 1.3.10]. ◻

Definition 2.23. A Quillen adjunction (𝐹 ⊣ 𝐺) is called a Quillen equivalence if
𝕃𝐹 and ℝ𝐺 are equivalences of categories.

A Quillen equivalence is not an equivalence of categories. However, we will
see that it induces an equivalence of ∞-categories obtained by localisation. This
will be a powerful tool to construct equivalences between ∞-categories.

Proposition 2.24. Let (𝐹 ⊣ 𝐺) be a Quillen equivalence between two model cate-
gories C and D. Let 𝑋 ∈ C be a cofibrant object, and let 𝑌 ∈ D be a fibrant object.
Then the counit and unit maps

𝑋 → 𝐺𝑅𝐹 𝑋 and 𝐹 𝑄𝐺𝑌 → 𝑌

are weak equivalences.

Proof. Follows directly from the definitions. ◻

3 Simplicial sets

Simplicial sets arise from many topics in mathematics, and they have a wide range
of applications in various branches of mathematics. For our purpose, they will be
used as a model for ∞-categories, as well as ordinary categories. We will see how
this is done in this section.

Definition and examples

Before giving the actual definition, let us look at some examples of simplicial sets.

Example 3.1. Let 𝑋 be a simplicial complex (as in topology), together with an
ordering of vertices for each simplex 𝜎, such that the inclusion of a face of 𝜎 into
𝜎 preserves the ordering of vertices. Let 𝑋𝑛 denote the set of 𝑛-simplices of 𝑋,
which may be degenerate. Then we have a series of maps

⋯ 𝑋2 𝑋1 𝑋0 ,

where𝑋𝑛 has (𝑛+1)maps to𝑋𝑛−1, called the facemaps, defined by taking the (𝑛+1)
faces of an 𝑛-simplex. 𝑋𝑛 also has (𝑛 + 1) maps to 𝑋𝑛+1, called the degeneracy
maps, defined by regarding an 𝑛-simplex as a degenerate (𝑛 + 1)-simplex. This
structure is called a simplicial set. ◃



3 Simplicial sets 21

Example 3.2. Let 𝑋 be a topological space, and denote

Sing(𝑋)𝑛 ∶= HomTop(Δ𝑛, 𝑋),

where Δ𝑛 denotes the standard 𝑛-simplex in topology. Then Sing(𝑋) is a simplicial
set, having the same structure as in the previous example. This construction is used
to define singular (co)homology in algebraic topology. ◃

Now we will give the formal definition of a simplicial set.

Definition 3.3. The category is defined as follows.

• Its objects are the sets [𝑛] ∶= {0, … , 𝑛} for all integers 𝑛 ≥ 0.
• The hom-set Hom ([𝑚], [𝑛]) consists of all maps from [𝑚] to [𝑛] preserving

the order ≤.

In the category , there are two special classes of morphisms.

• There are 𝑛 maps from [𝑛] to [𝑛 − 1], denoted by 𝑑𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1), defined
by merging the elements 𝑖 and 𝑖+1 in [𝑛]. These are called the coface maps.

• There are (𝑛+2)maps from [𝑛] to [𝑛+1], denoted by 𝑠𝑖 (0 ≤ 𝑖 ≤ 𝑛+1), defined
by skipping the element 𝑖 in [𝑛+1]. These are called the codegeneracymaps.

In fact, all morphisms in can be written as a composition of these coface and
codegeneracy maps. These maps form a diagram

[0] [1] [2] ⋯

in the category .

Definition 3.4. A simplicial set is a functor from op to Set, i.e. a contravariant
functor from to Set. We denote the category of simplicial sets by

sSet ∶= Fun( op, Set).

More generally, for any category C, a simplicial object in C is a functor from op

to C, and a cosimplicial object in C is a functor from to C.

Let 𝑋 be a simplicial set. The set 𝑋𝑛 ∶= 𝑋([𝑛]) is called the set of 𝒏-simplices
of 𝑋. The maps

𝑑𝑖 ∶ 𝑋𝑛 → 𝑋𝑛−1 and 𝑠𝑖 ∶ 𝑋𝑛 → 𝑋𝑛+1, for 0 ≤ 𝑖 ≤ 𝑛,

induced by the morphisms 𝑑𝑖 and 𝑠𝑖 in the category , are called the face maps
and the degeneracy maps, respectively.

Example 3.5. We construct some examples of simplicial sets.
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• The simplicial set Δ[𝑛], as a simplicial complex, corresponds to the standard
𝑛-simplex. Its 𝑘-simplices are in 1–1 correspondence with order-preserving
maps [𝑘] → [𝑛], where [𝑛] can be seen as the set of vertices of Δ[𝑛].

• Note that Δ[•] is a cosimplicial object in sSet.
• By removing the only non-degenerate 𝑛-simplex in Δ[𝑛], we obtain its

boundary 𝜕Δ[𝑛].
• The simplicial set 𝑆𝑛 is defined to be Δ[𝑛]∕𝜕Δ[𝑛], where the quotient is done

degreewise. ◃

Proposition 3.6. The category sSet admits all (small) colimits and limits, which
are defined degreewise, e.g.

(𝑋 × 𝑌 )𝑛 ∶= 𝑋𝑛 × 𝑌𝑛.

Proof. Exercise for the reader. ◻

For example, the product Δ[1] × Δ[1] is a solid square, which looks like

• •

• • ,

with 2 non-degenerate 2-simplices and 5 non-degenerate 1-simplices, but actually
it has 3 × 3 = 9 = 5 + 4 possibly degenerate 1-simplices in total.

Geometric realisation

A simplicial set is often pictured as a simplicial complex together with an ordering
of vertices for each simplex. The idea of geometric realisation is that one can forget
the ordering and get a topological space.

Proposition 3.7. Every simplicial set can be obtained from ∅ by attaching Δ[𝑛]
along its boundary 𝜕Δ[𝑛] and taking colimits. ◻

In the category Top, we have the standard 𝑛-simplex Δ𝑛. If we put all these
spaces together, we get a cosimplicial object Δ• in Top, which specifies “how Δ[𝑛]
should look like in Top”. Given this data, we can easily define a functor

|•|∶ sSet → Top

by sending Δ[𝑛] to Δ𝑛, and extending it to other simplicial sets by taking colimits.
This functor is called the geometric realisation functor.

Moreover, the functor |•| has a right adjoint called Sing, defined by

Sing𝑋 ∶= HomTop(Δ•, 𝑋),

which is exactly as we defined it before.
This construction can be generalised as follows.
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Construction 3.8. LetC be a categorywith colimits. If we specify any cosimplicial
object Δ• inC, thenwe know “how Δ[𝑛] should look like inC”, andwe can similarly
define an adjunction

sSet C .
Δ[𝑛]↦Δ𝑛

⊥
𝑋↦HomC(Δ•,𝑋)

◃

As we will see in the future, many constructions related to simplicial sets are
special cases of this construction. Here is one example.

Example 3.9. Let us take C = Ch𝑅, the category of cochain complexes of 𝑅-
modules, where 𝑅 is a ring. Take

Δ𝑛 ∶= (⋯ → 0 → 𝑅⊕(𝑛+1
𝑛+1)

(−𝑛)

→ ⋯ → 𝑅⊕(𝑛+1
2 )

(−1)

→ 𝑅⊕(𝑛+1)

(0)

→ 0 → ⋯)

to be the simplicial chain complex of the standard 𝑛-simplex. This construction
gives a functor sSet → Ch𝑅, which computes the simplicial homology of a simpli-
cial set. The composition

Top
Sing
−−−→ sSet → Ch𝑅

computes the singular homology of a topological space. ◃

Let us go back to the adjunction |•| ⊣ Sing. Actually, this is a Quillen equiva-
lence between model categories.

Definition 3.10. Let 0 ≤ 𝑖 ≤ 𝑛. The simplicial set Λ𝑖[𝑛], called a horn, is obtained
from 𝜕Δ[𝑛] by removing the face opposite to the 𝑖-th vertex.

Theorem 3.11. The category sSet has a standard model structure, with

• W ∶= {weak homotopy equivalences of topological spaces}.
• Cof ∶= {injections}.
• Fib = RLP{Λ𝑖[𝑛] ↪ Δ[𝑛] ∣ 0 ≤ 𝑖 ≤ 𝑛, 𝑛 > 0}.
• Fib∩W = RLP{𝜕Δ[𝑛] ↪ Δ[𝑛] ∣ 𝑛 ≥ 0}.

The proof is rather tedious and will not be presented here. See [Hov99, Theo-
rem 3.6.5].

Finally, we state without proof the following result.

Theorem 3.12. The adjunction |•| ⊣ Sing is a Quillen equivalence between sSet
and Top.

See [Hov99, Theorem 3.6.7].
The reader can show that the adjunction is a Quillen adjunction, without using

this theorem.
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Categories as simplicial sets

Simplicial sets can be seen as a model for categories. For example, the simplicial
set Δ[2] can be seen as a diagram

•

• • ,
⇓

where the double arrow indicates that the 2-simplex “witnesses” the composition
of the two arrows. In an ordinary category, this diagram is just a chain of 2 arrows

• → • → • .

As another example, the simplicial set Δ[2] × Δ[1] corresponds to a diagram

• • •

• • • .

Definition 3.13. Let C be a (small) category. The nerve of C is a simplicial set
denoted by N(C). Its 𝑛-simplices are chains of 𝑛 arrows

• → • → ⋯ → •

in C. Its 0-th (resp. 𝑛-th) face map is defined by discarding the first arrow (resp. the
last arrow). For 0 < 𝑖 < 𝑛, its 𝑖-th face map is defined by composing its 𝑖-th and
(𝑖 + 1)-th maps. Its degeneracy maps are defined by inserting identity morphisms.

The reader can verify that, in the above examples, the nerve of the categories
are the corresponding simplicial sets.

Remark 3.14. In fact, this is another special case of (3.8). Namely, the cosimplicial
object Δ• in Cat, given by

Δ𝑛 ∶= • → • → ⋯ → •

with 𝑛 consecutive arrows, gives an adjunction

sSet Cat .
Ho

⊥
N

The right adjoint is precisely the nerve functor defined above. ◃

Note that not all simplicial sets are categories. For example, consider Λ1[2],
which has two arrows that cannot be composed. In fact, if we define the spine
Sp(𝑛) ⊂ Δ[𝑛] to consist of all vertices and the edges [𝑖, 𝑖 + 1] for 0 ≤ 𝑖 < 𝑛, then
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a simplicial set 𝑋 is the nerve of a category, if and only if it satisfies the lifting
property

Sp(𝑛) 𝑋

Δ[𝑛]
∃!

for all 𝑛 ≥ 0.

Kan complexes and quasi‐categories

Kan complexes are simplicial sets that looks like topological spaces, and will be
used to model ∞-groupoids.

Definition 3.15. A Kan complex is a fibrant simplicial set. In other words, it
satisfies the horn extension property, that is, the lifting property

Λ𝑖[𝑛] 𝑋

Δ[𝑛]

for all 0 ≤ 𝑖 ≤ 𝑛, 𝑛 > 0.
Example 3.16. The simplicial set Δ[𝑛] is not a Kan complex if 𝑛 ≥ 1. Namely,
consider the horn

Λ0[2] → Δ[𝑛],
0, 1, 2 ↦ 0, 1, 0.

Then it is impossible to extend this horn to make a Δ[2]. The reason is that Δ[𝑛],
seen as a category, does not have inverses of morphisms. In other words, it does
not look like a groupoid, while Kan complexes must look like groupoids. ◃
Example 3.17. For any topological space 𝑋, the simplicial set Sing𝑋 is a Kan
complex, as one can show easily. Therefore, for any simplicial set 𝑆, the simplicial
set Sing |𝑆| can be used as a fibrant replacement of 𝑆. ◃

As we have seen above, Kan complexes look like groupoids with higher struc-
tures. In a Kan complex, 1-morphisms are invertible, but only up to a 2-morphism,
i.e. 2-simplex. The horn extension property ensures that all higher morphisms are
also invertible, up to even higher morphisms. This is exactly what an ∞-groupoid
should be.

Definition 3.18. An ∞-groupoid, or an (∞, 0)-category, is a Kan complex.

For example, for a topological space 𝑋, the Kan complex Sing𝑋 can be seen
as the “fundamental ∞-groupoid” of 𝑋.

Definition 3.19. A homotopy type is a homotopy type of ∞-groupoids, i.e. an
element of Ho(sSet), which is equivalent to the category Ho(Top) ≃ hCW.
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Next, we wish to define (∞, 1)-categories in a similar way. The following table
shows that the extension of horns corresponds to properties of a category, assuming
that we are considering the nerve of an ordinary category.

Horn Property
Λ0[2] every morphism is left invertible
Λ1[2] composition of morphisms
Λ2[2] every morphism is right invertible
Λ0[3] every morphism is an epimorphism

Λ1[3], Λ2[3] associativity of composition
Λ3[3] every morphism is a monomorphism

otherwise (satisfied by any category)

As an exercise, the reader should verify everything in the table.
We notice that the extension of Λ0[2], Λ2[2], Λ0[3] and Λ3[3] can not be sat-

isfied by all categories, while the extension of “inner horns” Λ𝑖[𝑛] for 0 < 𝑖 < 𝑛
describes properties that any category should satisfy.

Definition 3.20. A quasi-category, or an (∞, 1)-category, is a simplicial set hav-
ing the lifting property

Λ𝑖[𝑛] 𝑋

Δ[𝑛]

for 0 < 𝑖 < 𝑛. In other words, inner horns can be extended.

The terminology is that quasi-categories are one of the various models for
(∞, 1)-categories. For this reason, we will stick to the term “quasi-categories”.
Some people also call quasi-categories “weak Kan complexes”.

Roadmap

A number of models and tools for studying (∞, 1)-categories will be used in the
sequel. Since we have finished most of the definitions, it is a good point now to
draw a roadmap as a preview of what we will encounter.

For a monoidal category V, let CatV denote the category of categories enriched
over V. (We ignore the set-theoretic issues here.) LetModel denote the category of
model categories. LetModelV denote the category of V-enriched model categories,
which we have not defined yet. Let QsCat denote the category of quasi-categories
(which should really be replaced by sSet in the following diagram).
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We have a diagram of categories

Model ModelsSet

CatsMod𝑅 CatCh𝑅 (dg categories)

QsCat CatsSet

CatTop

CathCW

Cat .

localise

Ho

forget

forget

Dold–Kan

⊥
forge

t
ℭ

⊥≃

ℎ

𝔑
ℎ

free

⊥
|•|

⊥≃

ℎ

Sing

𝜋0

Some of the maps are easy to define, while others will be defined later. This dia-
gram is “commutative”, in a sense which will be made precise later on. Everything
above CathCW can be seen as models for (∞, 1)-categories. Homotopy theory in
these categories are called homotopy coherent, as opposed to homotopy com-
mutative, which refers to commutative diagrams in CathCW.

As we can see in the diagram, homological algebra, which is done in a dg (dif-
ferential graded) category, is related to (∞, 1)-category theory. This relationship
will be studied a few sections later.

4 Models for∞‐categories
Infinity categories are difficult to study. Unlike in classical category theory, in order
to understand infinity categories, one needs to work with multiple models, instead
of a single definition.

In these notes, we will work with two models for (∞, 1)-categories: quasi-
categories, and categories enriched over Kan complexes. We have already defined
both concepts in previous sections, and we have seen why they are able to model in-
finity categories. Now, wewill explore the relationships between these twomodels.
We will see that these models are equivalent, in the sense of a Quillen equivalence.

Quasi‐categories

Recall from the previous section that a quasi-category is a simplicial set in which
inner horns can be extended.

Let C be a quasi-category, Let 𝑥, 𝑦 ∈ C0 be two points. Our first goal is to
define the hom-space HomC(𝑥, 𝑦). Instead of being a discrete set, it should contain
information describing homotopies and higher homotopies, which comprise the
higher structure of an infinity category.

We now introduce some terminology for a quasi-category C.

• We say 𝑥 is an object of C, and write 𝑥 ∈ C, if 𝑥 ∈ C0.
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• We say 𝑓 ∶ 𝑥 → 𝑦 is a morphism of C, if 𝑓 ∈ C1, and 𝑑0𝑓 = 𝑥, 𝑑1𝑓 = 𝑦.
• The identity morphism 𝟙𝑥 of an object 𝑥 ∈ C refers to the degenerate 1-

simplex 𝑠0(𝑥).
• For morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧, we say that a morphism ℎ∶ 𝑥 → 𝑧

is a composition of 𝑔 and 𝑓 , if there is a 2-simplex 𝜎 ∈ C2 such that 𝑑0𝜎 = 𝑔,
𝑑2𝜎 = 𝑓 , and 𝑑1𝜎 = ℎ. This can be drawn as a diagram

𝑦

𝑥 𝑧
𝑔𝑓

ℎ

in C. Note that composition is not unique in a quasi-category.
• Let 𝐴 ⊂ C0 be a set of objects of C. The full subcategory spanned by 𝐴 is

the largest sub-simplicial set of C whose 0-simplices are precisely those in
𝐴.

Definition 4.1. Let 𝑓, 𝑔 ∶ 𝑥 → 𝑦 be two morphisms in C. We say that 𝑓 and 𝑔 are
homotopic, if the following equivalent conditions hold.

• There is a 2-simplex
𝑥

𝑦
𝑥

𝟙𝑥

𝑓

𝑔
in C.

• There is a 2-simplex
𝑥

𝑦
𝑥

𝟙𝑥

𝑔

𝑓

in C.

• There is a 2-simplex
𝑦

𝑥
𝑦
𝟙𝑦

𝑓

𝑔
in C.

• There is a 2-simplex
𝑦

𝑥
𝑦
𝟙𝑦

𝑔

𝑓

in C.

• There is a square
𝑥 𝑦

𝑥 𝑦
𝟙𝑥

𝑓

𝟙𝑦

𝑔

in C, which is a map Δ[1] × Δ[1] → C.

• There is a square
𝑥 𝑦

𝑥 𝑦
𝟙𝑥

𝑔

𝟙𝑦

𝑓

in C.

Using the horn extension property for Λ1[3] and Λ2[3], one can show that all
the above conditions are equivalent. We leave this as an exercise for the reader.
Proposition 4.2. Homotopy of morphisms is an equivalence relation, and respects
composition of morphisms. In particular, composition is unique up to homotopy.
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Proof. Exercise for the reader. ◻

Definition 4.3. Let C be a quasi-category. The homotopy category of C is an
ordinary category Ho(C), defined as follows.

• Its objects are objects of C.

• Its morphisms are homotopy classes of morphisms in C.

We regard Ho(C) as obtained from C by forgetting its higher structure.

Theorem 4.4 (Joyal). Let C be a quasi-category. Then C is a Kan complex if and
only if Ho(C) is a groupoid.

It is easy to see that if C is a Kan complex, i.e. an ∞-groupoid, then Ho(C) is a
groupoid. But the converse is a non-trivial result.

Our next step is to assign a “higher structure”, i.e. a homotopy type, to ev-
ery hom-space HomC(𝑥, 𝑦), as a way to describe higher homotopies between mor-
phisms.

Definition 4.5. Let C be a quasi-category, and let 𝑥, 𝑦 ∈ C be two objects.

• The simplicial set Hom⊳
C(𝑥, 𝑦) is defined as follows. Its 𝑛-simplices are

Hom⊳
C(𝑥, 𝑦)𝑛 ∶= {𝜎 ∈ C𝑛+1 | 𝜎|Δ{0,…,𝑛} = 𝑥, 𝜎(𝑛 + 1) = 𝑦},

where 𝜎 is regarded as a map Δ[𝑛 + 1] → C, and Δ{0, … , 𝑛} ⊂ Δ[𝑛 + 1] is
the face spanned by the vertices 0, … , 𝑛.

• Dually, we define the simplicial set Hom⊲
C(𝑥, 𝑦) by

Hom⊲
C(𝑥, 𝑦)𝑛 ∶= {𝜎 ∈ C𝑛+1 | 𝜎(0) = 𝑥, 𝜎|Δ{1,…,𝑛+1} = 𝑦}.

• There is yet another version of the hom-space Hom◻
C (𝑥, 𝑦), defined by

Hom◻
C (𝑥, 𝑦)𝑛 ∶= {𝜎 ∶ Δ[𝑛] × Δ[1] → C | 𝜎|Δ[𝑛]×{0} = 𝑥, 𝜎|Δ[𝑛]×{1} = 𝑦}.

These three constructions do not give isomorphic simplicial sets in general.
However, we will see that these three simplicial sets are homotopy equivalent Kan
complexes, so that the hom-space has a well-defined homotopy type.

Note that none of these constructions can produce a category enriched over sim-
plicial sets. The reason is that composition can not be well-defined. However, we
will soon construct a simplicial category whose hom-spaces are homotopy equiv-
alent to these ones.

Proposition 4.6. The simplicial sets Hom⊳
C(𝑥, 𝑦), Hom⊲

C(𝑥, 𝑦) and Hom◻
C (𝑥, 𝑦) are

Kan complexes.
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Proof. For Hom⊳
C(𝑥, 𝑦), it is not difficult to see that it has the horn extension prop-

erty for the horns Λ𝑖[𝑛] for 0 < 𝑖 ≤ 𝑛. Therefore, it is a quasi-category. Moreover,
in its homotopy category, every morphism has a left inverse. This implies that its
homotopy category is a groupoid, so that by (4.4), it is a Kan complex. The same
argument shows that Hom⊲

C(𝑥, 𝑦) is also a Kan complex.
For Hom◻

C (𝑥, 𝑦), the proof uses the Joyal model structure on sSet, and will be
presented later. ◻

Simplicial categories

Recall from the first section that intuitively, an (∞, 1)-category can be seen as a
category enriched over the category of (∞, 0)-categories, which are modelled with
Kan complexes. Therefore, categories enriched over Kan complexes should be
another model for (∞, 1)-categories. We generalise this a bit by considering cate-
gories enriched over all simplicial sets.

Definition 4.7. A simplicial category is a category enriched over sSet.

In a simplicial category, we regard the 0-simplices of the hom-spaces as mor-
phisms, the 1-simplices as homotopies between morphisms, and higher dimen-
sional simplices as higher homotopies.

For example, the category sSet is a simplicial category, equipped with the fol-
lowing simplicial structure on its hom-spaces.

Definition 4.8. Let 𝑋, 𝑌 be two simplicial sets. The mapping space Map(𝑋, 𝑌 )
is the simplicial set whose 𝑛-simplices are maps from 𝑋 × Δ[𝑛] to 𝑌 .

The category Top can also be seen as a simplicial category, by taking the Sing
of all its mapping spaces, equipped with the compact open topology.

It is very easy to define the homotopy category of a simplicial category.

Construction 4.9. Let C be a simplicial category. The functors

sSet
ℎ−→ hCW

𝜋0−−→ Set

assign C with an hCW-enriched category ℎC, and an ordinary category denoted by
Ho(C) ∶= 𝜋0ℎC. The latter is called the homotopy category of C. ◃

Although the definition of an enriched category requires strict (i.e. unique)
composition and strict associativity, many other things can be done in the non-
strict, or “up to homotopy”way, and it is often good to think of simplicial categories
in the non-strict way. Here is an example.

Definition 4.10. A simplicial groupoid is a simplicial category whose homotopy
category is a groupoid. A simplicial group is a simplicial groupoid with a unique
object.
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Compare (4.4). In this definition, although composition is strict, taking the
inverse is non-strict, i.e. up to homotopy.

Next, we aim to define a pair of adjoint functors

sSet CatsSet ,
ℭ

⊥
𝔑

as a conversion between quasi-categories and simplicial categories. We will see
that this adjunction is a Quillen equivalence, given suitable model structures on
both sides.

To define such an adjunction, by (3.8), we only need to specify what ℭΔ[𝑛] is.
Intuitively, it should look like a chain of 𝑛 arrows

0 → 1 → ⋯ → 𝑛 ,

whose nerve is Δ[𝑛]. However, we need to modify it in order to allow the com-
position law, e.g. (0 → 1 → 2) = (0 → 2), to hold only up to homotopy. This
motivates the following construction.

Construction 4.11. Let 𝑛 ≥ 0 be an integer. The simplicial category ℭ𝑛 is defined
as follows.

• It has (𝑛 + 1) objects, which we call 0, 1, … , 𝑛.

• Its hom-spaces are given by Hom(𝑖, 𝑗) = 𝑁(𝑃𝑖𝑗), where

𝑃𝑖𝑗 ∶=
{

∅, 𝑖 > 𝑗,
poset of subsets of {𝑖, 𝑖 + 1, … , 𝑗} containing 𝑖, 𝑗, 𝑖 ≤ 𝑗,

where a poset is naturally regarded as a category. Composition is defined by
union of sets. ◃

For example, ℭ2 is the simplicial category

1

0 2 ,

• 12•01

•
02

•
012

where the composition 12 ∘ 01 gives the map 012∶ 0 → 2, which is homotopic, but
not equal to, the map 02∶ 0 → 2 which we regard as going directly (not passing 1)
from 0 to 2.
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Likewise, ℭ3 is the simplicial category

1 2

0 3 ,

•12

•13

•123

• 23•01

•
02

•
012

•03

•023

• 013

• 0123

where the mapping space 𝑁(𝑃03) is isomorphic to Δ[1] × Δ[1]. As we can see, the
4 points in this space correspond to the 4 ways to go from 0 to 4 along the arrows,
namely, 0 → 3, 0 → 1 → 3, 0 → 2 → 3, and 0 → 1 → 2 → 3. All these 4 maps
from 0 to 3 are homotopic.

In general, the mapping space Homℭ𝑛 (𝑖, 𝑗) is the space of all ways to go from 𝑖
to 𝑗 along the arrows. If 𝑖 < 𝑗, then it is isomorphic to Δ[1]𝑗−𝑖−1.

Definition 4.12. The cosimplicial object ℭ• in CatsSet determines an adjunction

sSet CatsSet ,
ℭ

⊥
𝔑

in the sense of (3.8). The right adjoint 𝔑 is called the simplicial nerve functor, or
the homotopy coherent nerve functor.

Now we can prove that categories enriched over Kan complexes are converted
to quasi-categories under this construction.

Proposition 4.13. If C is a category enriched over Kan complexes, then 𝔑C is a
quasi-category.

Proof. We need to establish the lifting property

Λ𝑖[𝑛] 𝔑C

Δ[𝑛]

for 0 < 𝑖 < 𝑛, which is equivalent to the lifting property

ℭΛ𝑖[𝑛] C

ℭΔ[𝑛] .
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But for 0 < 𝑖 < 𝑛, the only difference between ℭΛ𝑖[𝑛] and ℭΔ[𝑛] is that the spaces
Hom(0, 𝑛) are different. Moreover, the inclusion

HomℭΛ𝑖[𝑛](0, 𝑛) ↪ HomℭΔ[𝑛](0, 𝑛)

is a trivial cofibration, which follows from a careful bookkeeping to work out what
the left hand side is. Since trivial cofibrations lift against Kan complexes, we are
done. ◻

Equivalence of the two models

For a quasi-category or a simplicial category C, we have defined a mapping space
HomC(𝑥, 𝑦) for each pair of objects 𝑥, 𝑦 in C. In fact, the homotopy type of the
mapping space is preserved by the above conversion between the two models.

Theorem 4.14. We have the following.

• If C is a quasi-category, then we have a weak equivalence of simplicial sets

Hom(∗)
C (𝑥, 𝑦) ≃ HomℭC(𝑥, 𝑦)

for each pair of objects 𝑥, 𝑦 ∈ C, where (∗) can be ⊲, ⊳, or ◻.
• If C is a category enriched over Kan complexes, then we have a homotopy

equivalence of Kan complexes

HomC(𝑥, 𝑦) ≃ Hom(∗)
𝔑C(𝑥, 𝑦)

for each pair of objects 𝑥, 𝑦 ∈ C, where (∗) can be ⊲, ⊳, or ◻.

The proof of the theorem will be given in the next section. Note that weak
equivalences between Kan complexes are homotopy equivalences, by Whitehead’s
theorem (2.16).

Thus, for a quasi-category C, we can define the hCW-enriched category ℎC to
be ℎℭC. It has the same objects and the same homotopy types of mapping spaces
as C. In fact, this definition works when C is any simplicial set.

Next, we describe the adjoint pair (ℭ ⊣ 𝔑) as a Quillen equivalence, so that
the two models are really equivalent.

Definition 4.15. Let C,D be two simplicial sets, or two simplicial categories. A
map 𝑓 ∶ C → D is called a categorical equivalence, if ℎ(𝑓)∶ ℎC → ℎD is an
equivalence of hCW-enriched categories, i.e. the following holds.

• 𝑓 is fully faithful, i.e. induces weak equivalences of mapping spaces.
• 𝑓 is essentially surjective, i.e. 𝜋0ℎ(𝑓) = Ho(𝑓 ) is an essentially surjective

functor between ordinary categories.

Remark 4.16. This defines the ∞-categorical notion of a categorical equivalence.
Any reasonable property of ∞-categories should be preserved by categorical equiv-
alences. Otherwise, we will regard that property as ill-defined. ◃
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From now on, by an equivalence of ∞-categories, or a similar phrase, we
always refer to a categorical equivalence.

Recall that a functor 𝑓 ∶ C → D between ordinary categories is an isofibration,
if for any 𝑥 ∈ C and any isomorphism 𝛼 ∶ 𝑓(𝑥) → 𝑦 in D, there exists 𝛼̃ ∶ 𝑥 → ̃𝑦
in C such that 𝛼 = 𝑓(𝛼̃).
Theorem 4.17. The category sSet has the Joyal model structure, with

• W = {categorical equivalences}.
• Cof = {injections}.
• The fibrant objects are quasi-categories.

The category CatsSet has the Bergner model structure, with
• W = {categorical equivalences}.
• Fib = {isofibrations that are fibrations on mapping spaces}.
• The fibrant objects are categories enriched over Kan complexes.

Using these model structures, the adjunction

sSet CatsSet

ℭ

⊥
𝔑

is a Quillen equivalence.

See [Lur09, Theorem 2.2.5.1].
This theorem has the following important corollary, which states that one can

convert between quasi-categories and categories enriched between Kan complexes,
up to a categorical equivalence.
Corollary 4.18 (Conversion between the two models). The functors

QsCat CatKan

𝑅ℭ

𝔑

are inverses of each other up to categorical equivalences, where 𝑅 denotes the
fibrant replacement functor of sSet.

Proof. Let C be a quasi-category, and let D be a category enriched over Kan com-
plexes. The unit and counit maps

𝔑𝑅ℭC → C and D → ℭ𝑄𝔑D
are categorical equivalences (2.24). Here we may take 𝑄 to be the identity functor,
which implies that the functors

𝔑𝑅ℭC → C and D → 𝑅ℭ𝔑D
are categorical equivalences. ◻
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Remark 4.19. We do not use the standard model structure on sSet when we study
quasi-categories, and here is a reason. Let C be a quasi-category. In many ex-
amples, C will contain an initial object 𝑥, and thus, the geometric realisation of
C can be contracted to 𝑥 linearly. Therefore, the homotopy type of C is trivial.
On the other hand, the Joyal model structure captures the internal information of a
quasi-category, rather than the global homotopy type. ◃

Examples

Let us look at a few examples of (∞, 1)-categories, modelled as quasi-categories.
We are now able to talk about these objects in a rigorous way.

Proposition 4.20. Let 𝑋, 𝑌 be two simplicial sets.

• If 𝑌 is a Kan complex, then Map(𝑋, 𝑌 ) is a Kan complex.
• If 𝑌 is a quasi-category, then Map(𝑋, 𝑌 ) is a quasi-category.

Proof. Exercise for the reader. ◻

Example 4.21. The quasi-category of spaces is defined to be

S ∶= 𝔑(Kan),

where Kan is the simplicial category of Kan complexes, which is enriched over Kan
complexes by (4.20). ◃

Example 4.22. The Kan-enriched category QsCat is defined as follows.

• The objects are quasi-categories.
• The morphism space Hom(C,D) is the maximal Kan complex in the simpli-

cial set Map(C,D).

Such a maximal Kan complex exists, since by (4.20) and (4.4), it is the sub-
simplicial set spanned by all the invertible edges.

The quasi-category of quasi-categories is defined to be

Cat∞ ∶= 𝔑(QsCat).

Note that we have taken the maximal Kan complex, instead of a fibrant replace-
ment. This is because the edges in the mapping space are natural transformations,
and we discard those natural transformations that are not invertible, rather than
inverting them.

This means that in order to get an (∞, 1)-category of (∞, 1)-categories, we have
to discard some information. The essential reason is that (∞, 1)-categories should
form an (∞, 2)-category. This can be seen as follows: in our model, the simplicial
category of quasi-categories is naturally enriched over quasi-categories, making it
an (∞, 2)-category. ◃
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Example 4.23. Let A be an abelian category. The simplicial category ChA of
cochain complexes in A is defined as follows. Recall that for a map 𝑓 ∶ 𝑋 → 𝑌 of
cochain complexes (not necessarily a chain map), we defined

𝑑𝑓 ∶= 𝑑 ∘ 𝑓 − (−1)|𝑓 |𝑓 ∘ 𝑑,
where |𝑓 | = 𝑘 if 𝑓 sends 𝑋𝑛 to 𝑌 𝑛+𝑘.

• The 0-simplices of Hom(𝑋, 𝑌 ) are those maps 𝑓 ∶ 𝑋 → 𝑌 such that
|𝑓 | = 0 and 𝑑𝑓 = 0.

In other words, they are chain maps.
• A 1-simplex between two 0-simplices 𝑓, 𝑔 is a map 𝑎∶ 𝑋 → 𝑌 such that

|𝑎| = −1 and 𝑑𝑎 = 𝑓 − 𝑔.
In other words, they are chain homotopies.

• An 𝑛-simplex consists of the data (𝜎, 𝜎0, … , 𝜎𝑛), where each 𝜎𝑖 is an (𝑛 − 1)-
simplex, and 𝜎 ∶ 𝑋 → 𝑌 is a map satisfying

|𝜎| = −𝑛 and 𝑑𝜎 = 𝜎0 − 𝜎1 + 𝜎2 − ⋯ ± 𝜎𝑛.
The 𝜎𝑖 are the faces of 𝜎, andwe require that the faces of the 𝜎𝑖 are compatible
with each other. In other words, an 𝑛-simplex is a map

𝐶cell
• (Δ𝑛) → ℋom(𝑋, 𝑌 )

from the cellular chain complex of Δ𝑛 to the chain complex ℋom(𝑋, 𝑌 ) de-
fined in (1.12).

We define
K∞(A) ∶= 𝔑(ChA)

to be the quasi-category of cochain complexes in A. If ChA has a suitable model
structure, e.g. if A is the category of modules over a ring, then we define

D∞(A) ∶= 𝔑(ChA,cf)
to be the derived quasi-category of A. ◃
Remark 4.24. We have seen that localising a category with weak equivalences
gives rise to ∞-categories. It turns out that if C is a model category, together with
a simplicial enrichment, satisfying some extra compatibility conditions, then we
have an equivalence of quasi-categories

C[W−1] ≃ 𝔑(Ccf).
Such a simplicial structure can be found in all the examples that we have seen.
Therefore, we have

S ≃ sSet[W−1] and D∞(A) ≃ ChA[W−1],
as examples of ∞-categorical localisations, where A needs to satisfy some condi-
tions. These will be made precise in later sections. ◃
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5 Grothendieck construction

Assume we have a functor 𝑓 ∶ 𝑋 → 𝑆 between two categories. Then for any
𝑠 ∈ 𝑆, we may take the fibre 𝑋𝑠 ∶= 𝑓 −1(𝑠), which is a subcategory of 𝑋. This
gives a rule assigning every object of 𝑆 a category. We might expect that this
assignment, i.e. taking the fibres, gives a functor 𝑆 → Cat. Indeed, this is true
provided that 𝑓 is a “fibration”, in a sense that will be made precise soon. This is
called the Grothendieck construction. Schematically, this means that we have a
correspondence

𝑋 Cat

⟺
𝑆 𝑆

fibration take fibres

between “fibrations” over 𝑆 and functors from 𝑆 to Cat.
Let us look at an example arising from algebraic geometry.

Example 5.1. Let Sch denote the category of schemes. For a scheme 𝑋, letQCoh𝑋
be the category of quasi-coherent sheaves on 𝑋. This defines a functor

QCoh(−) ∶ Schop → Cat.

If we look carefully, it is not a functor in the usual sense, since the composition
law

𝑓 ∗ ∘ 𝑔∗ = (𝑔 ∘ 𝑓)∗

only holds up to a natural isomorphism, i.e. a 2-morphism in Cat. We call such a
“functor” a 2-functor.

Applying the Grothendieck construction to this 2-functor, we should get a “fi-
bration” which we denote by

QCoh → Schop,

whose fibre over 𝑋 ∈ Schop is the category QCoh𝑋 . Indeed, we may construct the
category QCoh of all quasi-coherent sheaves as follows.

• The objects are pairs (𝑋, ℱ ), where ℱ is a quasi-coherent sheaf on the
scheme 𝑋.

• A morphism from (𝑋, ℱ ) to (𝑌 , 𝒢 ) consists of a map of schemes 𝑓 ∶ 𝑌 →
𝑋, together with a map of 𝒪𝑌 -modules 𝑓 ∗ℱ → 𝒢 , or equivalently, a map
of 𝒪𝑋-modules ℱ → 𝑓∗𝒢 .

The natural forgetful functor QCoh → Schop is the “fibration” that we wished to
construct. This is an example of a cocartesian fibration, which we will define later
in this section. ◃
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For ordinary categories

Wewill study four kinds of fibrations of categories, which correspond to functors to
Cat according to the following table, whereGpd denotes the category of groupoids.

Fibration Functor
left fibration 𝑋 → 𝑆 ⟺ 𝑆 → Gpd
right fibration 𝑋 → 𝑆 ⟺ 𝑆op → Gpd

cocartesian fibration 𝑋 → 𝑆 ⟺ 𝑆 → Cat
cartesian fibration 𝑋 → 𝑆 ⟺ 𝑆op → Cat

We start with left fibrations, which Grothendieck originally called “categories
cofibred in groupoids”. By the table above, for any 𝑠 ∈ 𝑆, the fibre 𝑋𝑠 should be
a groupoid, and for any morphism 𝑠 → 𝑠′ in 𝑆, we should have a “transport map”
𝑋𝑠 → 𝑋𝑠′ .

In order to define the transportmap, we require that themap 𝑝∶ 𝑋 → 𝑆 satisfies
the following properties.

• Transport of objects: for any 𝑥 ∈ 𝑋 and any morphism 𝛼 ∶ 𝑠 → 𝑠′ in 𝑆,
where 𝑠 ∶= 𝑝(𝑥), there exists a morphism 𝛼̃ ∶ 𝑥 → 𝑥′ in 𝑋 such that 𝑝(𝛼̃) =
𝛼. Pictorially, this means that the lifting problem

𝑥

𝑠 𝑠′

⟹
𝑥 𝑥′

𝑠 𝑠′

has a solution.
• Transport of morphisms: the lifting problem

𝑥 𝑥′

𝑦 𝑦′

𝑠 𝑠′

⟹

𝑥 𝑥′

𝑦 𝑦′

𝑠 𝑠′

has a unique solution.

It is easy to see that if these properties are satisfied, then the transport map
𝑋𝑠 → 𝑋𝑠′ is well-defined up to a natural isomorphism. Namely, one chooses an
arbitrary way to transport the objects, and then the morphisms can be transported
uniquely.

We define left fibrations by reformulating these axioms.

Definition 5.2. A functor 𝑝∶ 𝑋 → 𝑆 is a left fibration, if it satisfies the following
transport axioms.
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• The lifting problem
Λ0[1] 𝑋

Δ[1] 𝑆

has a solution.
• The lifting problem

Λ0[2] 𝑋

Δ[2] 𝑆

has a unique solution.

In these diagrams, the notations Λ0[𝑛] and Δ[𝑛] represent their corresponding or-
dinary categories. Precisely, they are Ho(Λ0[𝑛]) and Ho(Δ[𝑛]).

As an exercise, the reader can verify that this definition is equivalent to the two
transport axioms given above it.

Remark 5.3. The uniqueness in the second axiom is actually a consequence of
the lifting property for Λ0[3], and thus will be replaced by the latter in the ∞-
categorical definition. ◃

If we take the map Δ[2] → 𝑆 to be the constant map at 𝑠, we see immediately
that every morphism in the fibre 𝑋𝑠 has a left inverse, and hence 𝑋𝑠 is a groupoid.

The discussion above readily implies the following.

Theorem 5.4 (Grothendieck construction). A left fibration between small cate-
gories 𝑋 → 𝑆 gives rise to a 2-functor 𝑆 → Gpd by taking the fibres. Conversely,
every 2-functor 𝑆 → Gpd corresponds to a left fibration 𝑋 → 𝑆 in this manner.

Proof. We only need to prove the converse. However, the construction of such a
left fibration is done in the same way as in (5.1). ◻

Dually, a functor 𝑝∶ 𝑋 → 𝑆 is a right fibration if 𝑝op ∶ 𝑋op → 𝑆op is a
left fibration. Under the Grothendieck construction, they correspond to functors
𝑆op → Gpd.

For left fibrations

Our next goal is to define Grothendieck construction for ∞-categories. As an ap-
plication, we will give a proof for the fact that

Hom⊲
C(𝑥, 𝑦) ≃ HomℭC(𝑥, 𝑦) ≃ Hom⊳

C(𝑥, 𝑦)

for objects 𝑥, 𝑦 of a quasi-category C.
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Definition 5.5. A map of simplicial sets 𝑝∶ 𝑋 → 𝑆 is called a left fibration, if
the lifting problem

Λ𝑖[𝑛] 𝑋

Δ[𝑛] 𝑆

has a solution for all 0 ≤ 𝑖 < 𝑛.
Dually, 𝑝 is called a right fibration if the above lifting problem has a solution

for all 0 < 𝑖 ≤ 𝑛.

This definition is a natural generalisation of the corresponding notion for ordi-
nary categories.

Proposition 5.6. Let 𝑋 be a simplicial set. The map 𝑋 → ∗ is a left fibration, if
and only if 𝑋 is a Kan complex.

Proof. The “if” part is trivial. For the converse, suppose that 𝑋 → ∗ is a left
fibration. Then 𝑋 is a quasi-category. Moreover, every morphism in the ordinary
category Ho(𝑋) admits a left inverse, so that Ho(𝑋) is a groupoid. By (4.4), 𝑋
must be a Kan complex. ◻

Let𝑆 be a simplicial set, and let sSet∕𝑆 denote the over-category, which consists
of

• The objects are maps 𝑋 → 𝑆.
• A morphism from a map 𝑋 → 𝑆 to a map 𝑌 → 𝑆 is a map 𝑋 → 𝑌 that fits

into a commutative triangle

𝑋 𝑌

𝑆 .

Following Lurie [Lur09], we will define a pair of adjoint functors

sSet∕𝑆 FunsSet(ℭ𝑆, sSet) ,
St

⊥
Un

where FunsSet denotes the (ordinary) category of simplicially enriched functors,
and we have the following.

• The functor St is called the straightening functor. Restricted to the left
fibrations, it will give the Grothendieck construction.

• The functor Un is called the unstraightening functor. Restricted to the
functors ℭ𝑆 → Kan, or equivalently 𝑆 → 𝔑(Kan) =∶ S, it will give the
other direction of the construction.
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• The adjunction (St ⊣ Un)will be aQuillen equivalence, given suitablemodel
structures on both categories.

Now, we begin the construction.

Definition 5.7. Let 𝑋, 𝑌 be simplicial sets. Their join is the simplicial set 𝑋 ⋆ 𝑌 ,
whose 𝑛 simplices are

(𝑋 ⋆ 𝑌 )𝑛 ∶= {(𝑓, 𝜎0, 𝜎1) |
𝑓 ∶ Δ[𝑛] → Δ[1]
𝜎0 ∶ 𝑓 −1(0) → 𝑋
𝜎1 ∶ 𝑓 −1(1) → 𝑌 },

with the natural face and degeneracy maps.

In other words, 𝑋 ⋆ 𝑌 is obtained from 𝑋 ⊔ 𝑌 by adjoining all possible arrows
(and higher dimensional arrows) pointing from 𝑋 to 𝑌 . For example, we have

Δ[𝑛] ⋆ Δ[𝑚] ≃ Δ[𝑛 + 𝑚 + 1].

As special notations, write

𝑋⊳ ∶= 𝑋 ⋆ {∞} and 𝑋⊲ ∶= {∞} ⋆ 𝑋,

where {∞} denotes a singleton set, and the point ∞ is called the cone point.

Construction 5.8. Let 𝑋 → 𝑆 be a map of simplicial sets. We construct the
functor

St𝑆 𝑋 ∶ ℭ𝑆 → sSet

as follows. For 𝑠 ∈ 𝑆, define

(St𝑆 𝑋)(𝑠) ∶= Hom𝑀 (∞, 𝑠),

where the simplicial category 𝑀 is defined by

𝑀 ∶= ℭ(𝑋⊲ ⊔
𝑋

𝑆).

In other words, this construction is done through the following procedure. First,
adjoint a point at infinity ∞ on the left of 𝑋, giving 𝑋⊲. Next, for each 𝑠 ∈ 𝑆,
crush the fibre 𝑋𝑠 to a point. Roughly speaking, the resulting category is 𝑀 , which
is a “straightened” version of 𝑋⊲. At this point, the morphism space Hom𝑀 (∞, 𝑠)
should still preserve information about 𝑋𝑠, since it was made out of all morphisms
from ∞ to 𝑋𝑠. Indeed, we will see that it is weakly homotopy equivalent to 𝑋𝑠 if
𝑋 → 𝑆 is a left fibration. ◃

Construction 5.9. Let 𝐹 ∶ ℭ𝑆 → sSet be a functor of simplicial categories. We
construct a left fibration

Un𝑆 𝐹 → 𝑆,
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so that Un𝑆 becomes a right adjoint of St𝑆 . Namely, we define

(Un𝑆 𝐹 )𝑛 ∶= {(𝜎, 𝑓) |
𝜎 ∶ Δ[𝑛] → 𝑆
𝑓 ∶ St𝑆 𝜎 → 𝐹 },

with a natural map to 𝑆. Its 𝑛-simplices are just “maps from Δ[𝑛] to 𝐹 ”, but pre-
cisely speaking, here Δ[𝑛] should be replaced by its Grothendieck construction,
which is St𝑆 Δ[𝑛]. This motivates the above construction. ◃

By the constructions, we see that St𝑆 and Un𝑆 form an adjunction

sSet∕𝑆 FunsSet(ℭ𝑆, sSet) .
St𝑆

⊥
Un𝑆

We will sometimes omit the subscript 𝑆 and simply write St and Un.
Example 5.10. Let us consider the case 𝑆 = {∗}. In this case, the Grothendieck
construction converts between fibrations onto {∗} and their fibres. We expect that
the adjunction

sSet sSet

St{∗}

⊥
Un{∗}

should be an equivalence.
By definition, We have

St{∗} Δ[𝑛] ≃ Homℭ(Δ[𝑛]∕Δ[𝑛−1])(0, ∗),
where Δ[𝑛 − 1] ↪ Δ[𝑛] as the 0-th face {1, … , 𝑛}, and Δ[𝑛]∕Δ[𝑛 − 1] denotes the
simplicial set obtained from Δ[𝑛] by crushing the 0-th face Δ[𝑛 − 1] to a point, and
we denote this point by ∗.

Let 𝑄• denote the cosimplicial simplicial set defined by
𝑄𝑛 ∶= Homℭ(Δ[𝑛]∕Δ[𝑛−1])(0, ∗).

Then the adjunction (St{∗} ⊣ Un{∗}) is given by 𝑄• via the construction (3.8).
With careful calculation (which we omit here; see [Lur09, Remark 2.2.2.6]), one
sees that there is a homeomorphism

|𝑄𝑛| ≃ Δ𝑛

of topological spaces, which is compatible with the coface maps (but not the code-
generacy maps). It follows that for any 𝑋 ∈ sSet, there is a homeomorphism

|St{∗} 𝑋| ≃ |𝑋|,
so that St{∗} 𝑋 and 𝑋 are weakly equivalent.

This calculation also implies that St{∗} preserves cofibrations and trivial cofi-
brations, so that (St{∗} ⊣ Un{∗}) is a Quillen equivalence, i.e., equivalence up to
homotopy. ◃
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For a general 𝑆 ∈ sSet, we have the following result.

Theorem 5.11. The category sSet∕𝑆 has the covariant model structure, with

• W is the class of maps 𝑋 → 𝑌 such that the induced map

𝑋⊲ ⊔
𝑋

𝑆 → 𝑌 ⊲ ⊔
𝑌

𝑆

is a categorical equivalence.
• Cof = {injections}.
• Fib ⊂ {left fibrations}.
• The fibrant objects are left fibrations over 𝑆.

The category FunsSet(ℭ𝑆, sSet) has the projective model structure, with

• W = {pointwise weak equivalences}.
• Fib = {pointwise fibrations}.
• Cof is determined by the lifting property.

Using these model structures, the adjunction

sSet∕𝑆 FunsSet(ℭ𝑆, sSet)
St𝑆

⊥
Un𝑆

is a Quillen equivalence.

See [Lur09, Theorem 2.2.1.2].

Corollary 5.12 (Grothendieck construction). The functors

LFib∕𝑆 FunsSet(ℭ𝑆,Kan)
𝑅St𝑆

Un𝑆

are inverses of each other up to weak equivalences, where

• 𝑅 denotes the fibrant replacement functor on FunsSet(ℭ𝑆, sSet).
• LFib∕𝑆 is the category of left fibrations over 𝑆, as a full subcategory of
sSet∕𝑆 .

• The weak equivalences on LFib∕𝑆 are fibrewise homotopy equivalences.
• The weak equivalences on FunsSet(ℭ𝑆,Kan) are pointwise homotopy equiv-

alences.
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Proof. Let 𝑋 → 𝑆 be a left fibration, and let 𝐹 ∶ ℭ𝑆 → Kan be a functor. The
unit and counit maps

Un𝑆 𝑅St𝑆 𝑋 → 𝑋 and 𝐹 → St𝑆 𝑄Un𝑆 𝐹

are categorical equivalences (2.24). Here we may take 𝑄 to be the identity functor,
which implies that the functors

Un𝑆 𝑅St𝑆 𝑋 → 𝑋 and 𝐹 → 𝑅 St𝑆 Un𝑆 𝐹

are weak equivalences. The statement on weak equivalences on LFib∕𝑆 will follow
from (5.14) below. ◻

Remark 5.13. Dually, for right fibrations, we have the contravariant model
structure on sSet∕𝑆 , and a Quillen equivalence

sSet∕𝑆 FunsSet(ℭ𝑆op, sSet) ,

St𝑆

⊥
Un𝑆

where FunsSet(ℭ𝑆op, sSet) is equipped with the projective model structure. ◃
Now we can prove the most desired property of this construction, which states

that the Grothendieck construction gives back the fibres of a left fibration.

Proposition 5.14. We have the following.

• Let 𝑋 → 𝑆 be a left fibration. Then for any 𝑠 ∈ 𝑆, there is a weak homotopy
equivalence

(St𝑆 𝑋)(𝑠) ≃ 𝑋𝑠.

• Let 𝐹 ∶ ℭ𝑆 → Kan be a functor. Then for any 𝑠 ∈ 𝑆, there is a homotopy
equivalence of Kan complexes

(Un𝑆 𝐹 )𝑠 ≃ 𝐹 (𝑠).

Proof. For the second part, note that by the definition of unstraightening,

(Un𝑆 𝐹 )𝑠 ≃ Un{𝑠} 𝐹 (𝑠) ≃ 𝐹 (𝑠),

where the second equivalence uses (5.10).
For the first part, we have a weak equivalence

𝑋 ∼→ Un𝑆 𝑅St𝑆 𝑋

of left fibrations over 𝑆, i.e. a fibrewise homotopy equivalence, by (5.12). It follows
that

𝑋𝑠 ≃ (Un𝑆 𝑅St𝑆 𝑋)𝑠

for any 𝑠 ∈ 𝑆. By the second part, we are done. ◻
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Our goal now is to use the Grothendieck construction to study the hom-spaces
of a quasi-category.

Let C be a quasi-category, and let 𝐾 be a simplicial set. Let 𝑝∶ 𝐾 → C be a
map of simplicial sets, which we regard as a commutative diagram in C.
Definition 5.15. The over-category C∕𝐾 is a quasi-category, with 𝑛-simplices

(C∕𝐾 )𝑛 ∶= {𝜎 ∶ Δ[𝑛] ⋆ 𝐾 → C | 𝜎|𝐾 = 𝑝}.
Dually, the under-category C𝐾∕ is a quasi-category, with 𝑛-simplices

(C𝐾∕)𝑛 ∶= {𝜎 ∶ 𝐾 ⋆ Δ[𝑛] → C | 𝜎|𝐾 = 𝑝}.
The following is an immediate consequence of (5.14).

Corollary 5.16. Let C be a quasi-category, and let 𝑥, 𝑦 ∈ C. Then
Hom⊲

C(𝑥, 𝑦) ≃ (StC C𝑥∕)(𝑦). ◻
Moreover, we have the following.

Proposition 5.17. Let C be a quasi-category, and let 𝑥, 𝑦 ∈ C. Then
(StC C𝑥∕)(𝑦) ≃ HomℭC(𝑥, 𝑦).

Proof. By the definition of straightening, we see that
HomℭC(𝑥, 𝑦) ≃ (StC{𝑥})(𝑦).

Therefore, it suffices to show that the map of functors
StC{𝑥} → StC C𝑥∕

is a weak equivalence. In fact, we will show that it is a trivial cofibration, which
reduces to showing that the inclusion

{𝑥} ↪ C𝑥∕

is a trivial cofibration in sSet∕C. Thus we only need to show that this map has the
left lifting property against left fibrations. This is because this map is a retract of
the map

{∞} ↪ (C𝑥∕)⊲,
which has the required left lifting property, since it is obtained by attaching
simpices along left horns. ◻

Combining these two equivalences, we see that
Hom⊲

C(𝑥, 𝑦) ≃ HomℭC(𝑥, 𝑦).
Together with a dual argument, involving right fibrations, we have shown that
Theorem 5.18. Let C be a quasi-category, and let 𝑥, 𝑦 ∈ C. Then

Hom⊲
C(𝑥, 𝑦) ≃ HomℭC(𝑥, 𝑦) ≃ Hom⊳

C(𝑥, 𝑦). ◻
This is our first application of the Grothendieck construction.



46 Homotopical Algebra

For cocartesian fibrations

Recall that we have a table of Grothendieck constructions.
Fibration Functor

left fibration 𝑋 → 𝑆 ⟺ 𝑆 → Gpd
right fibration 𝑋 → 𝑆 ⟺ 𝑆op → Gpd

cocartesian fibration 𝑋 → 𝑆 ⟺ 𝑆 → Cat
cartesian fibration 𝑋 → 𝑆 ⟺ 𝑆op → Cat

Now, we sketch the construction for cocartesian and cartesian fibrations.
Let 𝑝∶ 𝑋 → 𝑆 be a functor between ordinary categories. Amorphism 𝑓 ∶ 𝑥 →

𝑦 in 𝑋 is said to be 𝒑-cocartesian, if we have a “cocartesian square”

𝑥 𝑦

𝑝(𝑥) 𝑝(𝑦) .

𝑓

𝑝(𝑓)

⌝

Precisely speaking, the map 𝑥 → 𝑦 has the following universal property. For any
commutative diagram without the dashed arrow,

𝑧

𝑥 𝑦

𝑝(𝑧)

𝑝(𝑥) 𝑝(𝑦) ,

𝑓

𝑔
∃! ℎ̃

𝑝(𝑓)

𝑝(𝑔)
ℎ

there exists a unique morphism ℎ̃∶ 𝑦 → 𝑧, such that ℎ̃𝑓 = 𝑔 and 𝑝(ℎ̃) = ℎ.
We reformulate this definition as follows.

Definition 5.19. Let 𝑝∶ 𝑋 → 𝑆 be a functor between ordinary categories. A
morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝑋 is said to be 𝒑-cocartesian, if the lifting problem

Λ0[2] 𝑋

Δ[2] 𝑆
has a unique solution, whenever the edge [0, 1] in Λ0[2] is sent to 𝑓 in 𝑋.

This definition generalises naturally to quasi-categories.
Definition 5.20. Let 𝑝∶ 𝑋 → 𝑆 be a functor between quasi-categories. A mor-
phism 𝑓 ∶ 𝑥 → 𝑦 in 𝑋 is said to be 𝒑-cocartesian, if the lifting problem

Λ0[𝑛] 𝑋

Δ[𝑛] 𝑆
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has a solution whenever the edge [0, 1] in Λ0[𝑛] is sent to 𝑓 in 𝑋.

As before, the uniqueness condition is dropped, as it is replaced by higher lifting
properties.

Definition 5.21. Let 𝑝∶ 𝑋 → 𝑆 be a functor between ordinary categories. Then
𝑝 is called a cocartesian fibration, if 𝑋 admits “pushouts” from 𝑆:

𝑥

𝑠 𝑠′

⟹
𝑥 𝑥′

𝑠 𝑠′ .

⌝

Precisely speaking, for any 𝑥 ∈ 𝑋 and any morphism 𝛼 ∶ 𝑠 → 𝑠′ in 𝑆, where
𝑠 ∶= 𝑝(𝑥), there exists a 𝑝-cocartesian morphism 𝛼̃ ∶ 𝑥 → 𝑥′ in 𝑋, such that
𝑝(𝛼̃) = 𝛼.

For quasi-categories, we have an extra requirement.

Definition 5.22. Let 𝑝∶ 𝑋 → 𝑆 be a functor between quasi-categories. Then 𝑝 is
called a cocartesian fibration, if

• The lifting problem
Λ𝑖[𝑛] 𝑋

Δ[𝑛] 𝑆

has a solution if 0 < 𝑖 < 𝑛. That is, 𝑝 is an inner fibration.
• 𝑋 admits “pushouts” from 𝑆:

𝑥

𝑠 𝑠′

⟹
𝑥 𝑥′

𝑠 𝑠′ .

⌝

The first condition is a general requirement for fibration-like maps of quasi-
categories, and it is satisfied by any functor between ordinary categories.

Proposition 5.23. A left fibration 𝑋 → 𝑆 is equivalently a cocartesian fibration
such that every edge of 𝑋 is cocartesian. ◻

Cocartesian fibrations provide an obvious way to define transport functors be-
tween the fibres, which implies the following theorem.

Theorem 5.24 (Grothendieck construction). A cocartesian fibration 𝑝∶ 𝑋 → 𝑆
of ordinary categories gives rise to a 2-functor 𝑆 → Cat by taking the fibres.
Conversely, every 2-functor 𝑆 → Cat corresponds to a cocartesian fibration 𝑋 →
𝑆 in this manner. ◻
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For quasi-categories, one needs a “marked” version of the straightening and
unstraightening construction. We define sSet+ to be the category of simplicial sets
with some marked edges, such that all degenerate edges are marked. The mor-
phisms in sSet+ are required to send marked edges to marked edges.

For a simplicial set 𝑆, let 𝑆♯ denote the marked version of 𝑆 in which all edges
are marked, and let 𝑆♭ denote the marked version of 𝑆 in which only the degenerate
edges are marked. We denote (sSet+)∕𝑆♯ by sSet+∕𝑆 .

Theorem 5.25. There exists a Quillen equivalence

sSet+∕𝑆 FunsSet(ℭ𝑆, sSet+) ,

St+𝑆

⊥

Un+
𝑆

given suitable model structures on both categories. Moreover,

• Un+
𝑆 sends functors to QsCat ≃ (sSet+)cf to cocartesian fibrations.

• St+𝑆 gives back the fibres for cocartesian fibrations, up to a categorical equiv-
alence.

See [Lur09, Theorem 3.2.0.1].

Corollary 5.26 (Grothendieck construction). The functors

CocFib∕𝑆 FunsSet(ℭ𝑆,QsCat)

𝑅St+𝑆

Un+
𝑆

are inverses of each other up to weak equivalences, where

• 𝑅 denotes the fibrant replacement functor on FunsSet(ℭ𝑆, sSet+).
• CocFib∕𝑆 is the category of cocartesian fibrations over 𝑆.
• The weak equivalences on CocFib∕𝑆 are the fibrewise categorical equiva-

lences.
• The weak equivalences on FunsSet(ℭ𝑆,QsCat) are the pointwise categorical

equivalences. ◻
Example 5.27. Let 𝑆 = Cat∞ be the category of quasi-categories, and let 𝐹 ∶=
(−)♭ ∈ Fun(𝑆, sSet+) be the inclusion functor. The cocartesian fibration

Un+
𝑆 𝐹 =∶ 𝒵 → Cat∞

is a universal fibration, in that every cocartesian fibration is equivalent to its pull-
back. Namely, let 𝑋 → 𝑇 be a cocartesian fibration. Then there exists a classifying
map

𝑓 ∶= St+𝑇 𝑋 ∶ 𝑇 → Cat∞,
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so that
𝑋 ≃ 𝑓 ∗𝒵.

Roughly speaking, this is because 𝑋 and 𝑓 ∗𝒵 both are cocartesian fibrations over
𝑆, and they have the same fibres. ◃

6 Model categories and localisation

In the introduction, we mentioned that if (C,W) is a category with weak equiva-
lences, then we get an ∞-category C[W−1] by inverting the arrows inW. If more-
over, the pair (C,W) comes from a model structure, which is usually the case, then
this ∞-category can be described more easily.

In this section, we aim to reformulate this idea rigorously, and we will see in
the following sections how the model structure is going to help us.

Localising an infinity category

First of all, we describe the process of localising a category with weak equivalences
(C,W) to get an ∞-category C[W−1]. We generalise the situation by also allowing
C to be an ∞-category.

Definition 6.1. Let C be a quasi-category, and let W be a set of edges (i.e., 1-
simplices) of C. The localisation C[W−1], if it exists, is a quasi-category defined
by the following universal property:

• For any quasi-category D, and any diagram without the dashed arrow

C D

C[W−1] ,

𝐹

∃!

such that 𝐹 sendsW to invertible edges in D, there exists a “unique” dashed
arrow making the diagram commute.

The “uniqueness” should be formulated in an ∞-categorical way: we require that

Fun(C[W−1],D) ∼→ FunW↦eq(C,D)

is an equivalence of quasi-categories, where the right hand side denotes the full
subcategory of Fun(C,D) spanned by those functors sendingW to invertible edges.

As with all things determined by universal properties, the localisation is unique
up to an equivalence, if it exists.
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Remark 6.2. In fact, the localisation is unique up to an equivalence, which is
unique up to a higher equivalence, which is unique up to an even higher equiva-
lence, and so on. In ordinary category theory, we often hear people say that an
object is “unique up to a unique isomorphism”. This is a low dimensional trunca-
tion of our notion of uniqueness, because no (non-trivial) higher equivalences exist
in an ordinary category. ◃

To prove the existence of such a localisation, we need to recall the notion of
marked simplicial sets.

Definition 6.3. Amarked simplicial set is a pair (𝑋, 𝐸), where 𝑋 is a simplicial
set, and 𝐸 is a set of edges of 𝑋 which contains all degenerate edges. The edges in
𝐸 are called the marked edges.

Recall that a map of marked simplicial sets from (𝑋, 𝐸) to (𝑌 , 𝐹 ) is a map of
simplicial sets 𝑓 ∶ 𝑋 → 𝑌 , such that 𝑓(𝐸) ⊂ 𝐹 . As we have mentioned in the
previous section, the category sSet+ of all marked simplicial sets carries a model
structure, which we shall describe now.

Definition 6.4. Let 𝑋 be a simplicial set.

• The marked simplicial set 𝑋♯ is the marked version of 𝑋 in which all edges
are marked.

• The marked simplicial set 𝑋♭ is the marked version of 𝑋 in which only the
degenerate edges are marked.

• If 𝑋 is a quasi-category, then the marked simplicial set 𝑋♮ is the marked
version of 𝑋 in which the invertible edges are marked.

Theorem 6.5. The category sSet+ has the (co)cartesian model structure, in
which

• The cofibrations are the injections.
• The weak equivalences are the maps 𝑓 ∶ 𝑋 → 𝑌 such that for any quasi-

category 𝑍, we have an equivalence of quasi-categories

HomsSet+ (𝑌 , 𝑍♮) ∼→ HomsSet+ (𝑋, 𝑍♮),

where both sides are full subcategories of the mapping spaces of simplicial
sets.

• The fibrant objects are those which are isomorphic to 𝑋♮ for some quasi-
category 𝑋.

See [Lur09, Proposition 3.1.3.7].
The name of the model structure may seem a little strange. In fact, it is a special

case of the two model structures on sSet+∕𝑆 when 𝑆 = {∗}. These two model struc-
tures were used in the formulation of Grothendieck construction for (co)cartesian
fibrations in the last section.

The existence of localisations follows as an immediate consequence.
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Corollary 6.6. Let C be a quasi-category, and letW be a set of edges of C. Then
C[W−1] exists.
Proof. Without loss of generality, we may assume thatW contains all degenerate
edges. Then (C,W) is a marked simplicial set. Let C[W−1] ∶= 𝑅(C,W) be its
fibrant replacement, which is a fibrant object, and thus a quasi-category. Then for
any quasi-category D, we have

HomsSet+ (C[W−1], D♮) ∼→ HomsSet+ ((C,W), D♮),

as desired. ◻

This proof is terribly abstract, and it does not give us a clue on how to work
with it in concrete examples. However, there is a construction given by Dwyer and
Kan [DK80b] which is much more explicit.

Construction 6.7. Let (C,W) be a category with weak equivalences, in the ordi-
nary sense. The simplicial category L(C,W) is constructed as follows. It has the
same objects as C, and for 𝑋, 𝑌 ∈ C, the simplicial set HomL(C,W)(𝑋, 𝑌 ) is defined
by

HomL(C,W)(𝑋, 𝑌 )𝑛 ∶=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

• • ⋯ •

• • ⋯ •
𝑋 𝑌

⋮ ⋮ ⋮

• • ⋯ •

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭ /∼

,

where

• There are 𝑛 + 1 rows and any number of columns. Each dot in the diagram
(except in the ellipses) represents an object of C.

• The horizontal arrows may go to the left or the right, but the arrows in the
same column must go in the same direction.

• The arrows going downwards or leftwards are inW.
• The equivalence relation ∼ is generated by composition of adjacent horizon-

tal arrows in the same direction.

The simplicial category L(C,W) is called the hammock localisation of (C,W),
since the above diagram looks like a hammock. ◃

By this construction, we easily see that the homotopy category of L(C,W) is
the ordinary category which we denoted by C[W−1] in (1.7).

Theorem 6.8. Let (C,W) be an ordinary category with weak equivalences. Then
there is a weak equivalence of marked simplicial sets

(C,W) ≃ (𝔑𝑅L(C,W))♮,
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where 𝑅 denotes the fibrant replacement functor from CatsSet to CatKan. In partic-
ular, there is an equivalence of quasi-categories

C[W−1] ≃ 𝔑𝑅L(C,W).

See [Hin13, §1.2].
As a corollary, the homotopy category of C[W−1] is equivalent to the category

defined in (1.7).

Simplicial model categories

If a model category has a compatible simplicial structure, then the ∞-category
obtained by localisation will be much easier to work with. This type of model
categories are called simplicial model categories.

Defining the compatibility conditions between the model structure and the sim-
plicial structure will require some preliminaries in monoidal category theory and
enriched category theory.

For simplicity, we will only be concerned with monoidal categories that are
symmetric, i.e., the tensor product is commutative, which is almost always the case.

Definition 6.9. A symmetric monoidal category consists of

• A monoidal category V.
• A natural equivalence

𝑇𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋

for 𝑋, 𝑌 ∈ V,

such that

• 𝑇 ∘ 𝑇 = 𝟙.
• For any 𝑋, 𝑌 , 𝑍 ∈ V, the diagram

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 (𝑌 ⊗ 𝑋) ⊗ 𝑍 𝑌 ⊗ (𝑋 ⊗ 𝑍)

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑌 ⊗ 𝑍) ⊗ 𝑋 𝑌 ⊗ (𝑍 ⊗ 𝑋)

commutes.

It can be shown that the last axiom above is enough to ensure that all possible
ways to form the tensor product of finitely many objects will give a unique result up
to a unique isomorphism. The essential reason is that Cat is a 2-category and has
no higher structure more than the level 2. This will be explained in later sections.

For example, all the examples of monoidal categories that we have mentioned
above are symmetric.
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Example 6.10. Let us give an example of a non-symmetric monoidal category.
Consider a non-commutative ring 𝑅, and consider the category of bimodules over
𝑅, with its monoidal structure given by the tensor product of bimodules. Then this
category is a non-symmetric monoidal category. ◃
Definition 6.11. A symmetric monoidal category V is said to be closed, if there
exists an internal hom functor

(−)(−) ∶ V × Vop → V,

and a natural isomorphism

HomV(𝑋 ⊗ 𝑌 , Z) ≃ HomV(𝑋, 𝑍𝑌 )

for 𝑋, 𝑌 , 𝑍 ∈ V. In short, the tensor product has a right adjoint.

To avoid awkward notation, we sometimes write HomV(𝑋, 𝑌 ) for 𝑌 𝑋 .

Example 6.12. Here are some examples and non-examples of closed symmetric
monoidal categories.

• The symmetric monoidal category (Set, ×) is closed, with internal hom given
by the powering of sets.

• The symmetric monoidal category (sSet, ×) is closed, with internal hom
given by the mapping space of simplicial sets (4.8).

• The symmetric monoidal category (Top, ×) is not closed. This is why al-
gebraic topologists like to use the category of compactly generated spaces,
which is closed with the × monoidal structure, with internal hom given by
the mapping space with compact open topology. ◃

Definition 6.13. Let V be a closed symmetric monoidal category, and let C be a
category enriched over V.

• C is tensored over V, if there exists a functor

− ⊗ −∶ V × C → C,

with a natural isomorphism

HomC(𝐴 ⊗ 𝑋, 𝑌 ) ≃ HomV(𝐴, HomC(𝑋, 𝑌 ))
for 𝐴 ∈ V and 𝑋, 𝑌 ∈ C, where HomV denotes the internal hom of V.

• C is cotensored, or powered, over V, if there exists a functor

(−)(−) ∶ C × Vop → C,

with a natural isomorphism

HomC(𝑋, 𝑌 𝐴) ≃ HomV(𝐴, HomC(𝑋, 𝑌 ))
for 𝐴 ∈ V and 𝑋, 𝑌 ∈ C, where HomV denotes the internal hom of V.



54 Homotopical Algebra

Example 6.14.

• As is easily seen, the categories Set, Top and sSet are tensored and cotensored
over Set.

• The simplicial categories Top and sSet are tensored and cotensored over sSet.

Now we are ready to define a simplicial model category.

Definition 6.15. Let C be a simplicial category. The underlying category C0 of
C is an ordinary category, obtained by regarding the 0-simplices as arrows, and
discarding all higher simplices.

Definition 6.16. A simplicial model category consists of

• A simplicial category C.
• A model structure on the underlying category C0 of C,

such that

• C is tensored and cotensored over sSet.
• For every cofibration 𝑖∶ 𝐴 → 𝐵 in sSet, and any cofibration 𝑗 ∶ 𝑋 → 𝑌 in
C0, the obvious map which we denote by

𝑖 ◻ 𝑗 ∶ 𝐴 ⊗ 𝑌 ⊔
𝐴⊗𝑋

𝐵 ⊗ 𝑋 → 𝐵 ⊗ 𝑌

is a cofibration in C0, and is trivial whenever 𝑖 or 𝑗 is trivial.

The last criterion above may seem somewhat technical, but it is a very natural
requirement if we consider the example

C = V = sSet,
𝐴 = {0} ⊂ Δ[1], 𝐵 = Δ[1],
𝑋 = 𝜕Δ[2], 𝑌 = Δ[2].

The purpose of this criterion is to ensure that the model structures on C and on V
are compatible.

For example, the categories Top and sSet are simplicial model categories.
An interesting point about simplicial model categories is that there are twoways

to obtain an ∞-category from them.

• First, a simplicial model category is a simplicial category, which gives rise
to an ∞-category.

• Second, any category with weak equivalences can be localised to obtain an
∞-category.

Surprisingly, these two ∞-categories turn out to be equivalent. Therefore, in order
to study the localised ∞-category, one only needs to look at the simplicial structure
of the model category, which is often quite easy to describe.
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Theorem 6.17 (Dwyer–Kan). Let C be a simplicial model category. Then Ccf is
enriched over Kan complexes, and there is an equivalence of quasi-categories

C[W−1] ≃ 𝔑Ccf.

See [Lur17, Theorem 1.3.4.20].
Example 6.18. As was mentioned in (4.24), this theorem implies that we have
equivalences

S ≃ sSet[W−1] and D∞(A) ≃ ChA[W−1],

where A is an abelian category such that ChA has the structure of a simplicial model
category, e.g. when A is the category of modules over a ring. ◃

7 Limits and adjunctions

In infinity categories, homotopy equivalent objects are equivalent by definition.
Therefore, the only well-defined notion of (co)limits is that of homotopy (co)limits.

Homotopy (co)limits behave very differently from ordinary (co)limits. For ex-
ample, the diagram

{∗, ∗} {∗}

{∗} 𝑆1
⌟

is a homotopy pushout diagram of topological spaces, where {∗, ∗} denotes the
discrete space with two points. The advantage of such a notion of (co)limits is that
if we change the objects in the diagram to homotopy equivalent ones, the result
does not change. The disadvantage is that they are difficult to compute.

However, model categories will give us great help in computing homotopy
(co)limits.

Colimits and limits

The simplest colimit is the empty colimit, that is, the initial object. In ordinary
category theory, the initial object is characterised by the property that it admits a
unique morphism to any other object.

The ∞-categorical way of saying something is unique is to say that all possible
choices form a contractible space, i.e. a contractible Kan complex.
Definition 7.1. Let C be a quasi-category. An object 𝑥 ∈ C is called an initial
object, if for any 𝑦 ∈ C, the mapping space HomC(𝑥, 𝑦) is contractible.

The notation HomC(𝑥, 𝑦) refers to any one of

Hom⊲
C(𝑥, 𝑦), Hom⊳

C(𝑥, 𝑦), HomℭC(𝑥, 𝑦), etc.,

which all have the same homotopy type (5.18).
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Remark 7.2. An initial object of C is equivalently an initial object of the hCW-
enriched category ℎC. In fact, most of the notions defined in this section will be
equivalent to the corresponding notions for hCW-enriched categories. ◃

One may expect that initial objects are unique if they exist. As before, unique-
ness means being a contractible space.

Lemma 7.3. Let C be a quasi-category, and let 𝑥 ∈ C. Then the maps

C𝑥∕ → C and C∕𝑥 → C

are a left fibration and a right fibration, respectively.

Proof. Exercise for the reader. ◻

Proposition 7.4. Let C be a quasi-category.

• An object 𝑥 ∈ C is an initial object, if and only if the left fibration

C𝑥∕ → C

is a trivial fibration.
• The full subcategory spanned by the initial objects is either empty, or a con-

tractible Kan complex.

Proof. For the first part, note that 𝑥 is an initial object if and only if the map C𝑥∕ →
C has contractible fibres. But a left fibration has contractible fibres iff it is a trivial
fibration, which is a standard fact [Lur09, Lemma 2.1.3.4].

For the second part, suppose we have a map 𝑓 ∶ 𝜕Δ[𝑛] → C, such that all
vertices are sent to initial objects, with 𝑛 > 0. We need to show that it can be
extended to a map Δ[𝑛] → C. Then we may lift in the diagram

𝜕Δ[𝑛 − 1] C𝑓(0)∕

Δ[𝑛 − 1] C

Cof∋

𝑓|Λ0[𝑛]

∈Fib∩W

𝑓|1,…,𝑛

to get the desired extension of 𝑓 to Δ[𝑛]. ◻

Colimits are nothing but initial objects of under-categories.

Definition 7.5. Let C be a quasi-category, 𝐾 a simplicial set, and let 𝑓 ∶ 𝐾 → C
be a diagram. A colimit of 𝑓 is an initial object of C𝐾∕.

We immediately deduce the following.

Corollary 7.6. Let C be a quasi-category, 𝐾 a simplicial set, and let 𝑓 ∶ 𝐾 → C
be a diagram.
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• A map ̄𝑓 ∶ 𝐾⊳ → C is a colimit of 𝑓 , if and only if the induced left fibration

C𝐾⊳∕ → C𝐾∕

is a trivial fibration.
• The category of colimits of 𝑓 is either empty, or a contractible Kan complex.

Proof. We have an isomorphism of simplicial sets

C𝐾⊳∕ ≃ (C𝐾∕)𝑥∕,

where 𝑥 denotes the image of the cone point of 𝐾⊳. Everything else is clear. ◻

Remark 7.7. The natural map

C𝐾⊳∕ → C𝑥∕

is always a trivial fibration, as can be shown by verifying the lifting property,
by transfinite induction on the number of simplices of 𝐾 . Details are left to the
reader. ◃

Colimits are not computable via this definition. We need to deduce some of
their properties to make them computable.

Proposition 7.8. Let C be a quasi-category, and let {𝑥𝛼}𝛼∈𝐴 be a collection of
objects in C. An object 𝑥 ∈ C is a coproduct of the objects 𝑥𝛼 , if and only if for any
𝑦 ∈ C, the induced map

HomC(𝑥, 𝑦) → ∏
𝛼

HomC(𝑥𝛼 , 𝑦)

is a homotopy equivalence.

Proof. We have a map 𝐴 → C, 𝛼 ↦ 𝑥𝛼 . The right hand side is equivalent to

∏
𝛼

(C𝑥𝛼∕)𝑦 ≃ (C𝐴∕)𝑦,

where the subscript 𝑦 means taking the fibre of the map to C. The left hand side is
equivalent to

(C𝑥∕)𝑦 ≃ ((C𝐴∕)𝑥∕)𝑦

by (7.7). Thus 𝑥 is a coproduct, if and only if the left fibration

(C𝐴∕)𝑥∕ → C𝐴∕

is a trivial fibration, if and only if it has contractible fibres, if and only if all the left
fibrations

((C𝐴∕)𝑥∕)𝑦 → (C𝐴∕)𝑦

are trivial fibrations. ◻
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This result on coproducts is a special case of a general theorem, which we state
below.

Let K be a category enriched over Kan complexes. Then the category of sim-
plicially enriched functors

FunsSet(K, sSet)

carries two model structures:

• The projective model structure, with weak equivalences and fibrations de-
fined pointwise, and cofibrations defined by the lifting property.

• The injective model structure, with weak equivalences and cofibrations de-
fined pointwise, and fibrations defined by the lifting property.

The constant functor

const∶ sSet → FunsSet(K, sSet)

is right Quillen with respect to the projective model structure, and left Quillen with
respect to the injective model structure. Therefore, the colimit functor

colim∶ FunsSet(K, sSet) → sSet

is left Quillen with respect to the projective model structure, as it is the left adjoint
of the constant functor. The limit functor

lim∶ FunsSet(K, sSet) → sSet

is right Quillen with respect to the injective model structure, as it is the right adjoint
of the constant functor.

Definition 7.9. Let K be a category enriched over Kan complexes.

• The homotopy colimit functor

hocolim∶ Ho(FunsSet(K, sSet)) → Ho(sSet)

is the left derived functor of the left Quillen functor

colim∶ FunsSet(K, sSet) → sSet,

where FunsSet(K, sSet) is equipped with the projective model structure.
• The homotopy limit functor

holim∶ Ho(FunsSet(K, sSet)) → Ho(sSet)

is the right derived functor of the right Quillen functor

lim∶ FunsSet(K, sSet) → sSet,

where FunsSet(K, sSet) is equipped with the injective model structure.
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Example 7.10. The homotopy pushout

{∗} ⊔
{∗,∗}

{∗}

is the homotopy type of 𝑆1, as is familiar in topology. A proof will be given later. ◃

We can now use homotopy limits of simplicial sets to define homotopy
(co)limits in categories enriched over Kan complexes.

Let K be a category enriched over Kan complexes. We denote by K⊳ the Kan-
enriched category obtained by adjoining a terminal object ∞, with

HomK⊳ (𝑥, ∞) = {∗} (𝑥 ∈ K⊳), HomK⊳ (∞, 𝑥) = ∅ (𝑥 ∈ K).

Let K⊲ be defined dually.

Definition 7.11. Let C and K be categories enriched over Kan complexes, and let
𝑓 ∶ K → C be a functor.

• A homotopy colimit of 𝑓 is a functor

̄𝑓 ∶ K⊳ → C,

such that ̄𝑓 |K = 𝑓 , and for any 𝑦 ∈ C, the induced map

HomC( ̄𝑓 (∞), 𝑦) → holim
𝑘∈K

HomC(𝑓 (𝑘), 𝑦)

is a weak homotopy equivalence.
• A homotopy limit of 𝑓 is a functor

̄𝑓 ∶ K⊲ → C,

such that ̄𝑓 |K = 𝑓 , and for any 𝑦 ∈ C, the induced map

HomC(𝑦, ̄𝑓 (∞)) → holim
𝑘∈K

HomC(𝑦, 𝑓 (𝑘))

is a weak homotopy equivalence.

This definition can be seen as the definition of ∞-(co)limits in the model of cat-
egories enriched over Kan complexes. The following theorem states that (co)limits
in quasi-categories coincide with homotopy (co)limits in this sense.

Theorem 7.12. Let C and K be categories enriched over Kan complexes, and let
𝑓 ∶ K → C be a functor. Then the functor between quasi-categories

𝔑𝑓 ∶ 𝔑K → 𝔑C

has a (co)limit, if and only if 𝑓 has a homotopy (co)limit, and in this case, they
coincide.
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See [Lur09, Theorem 4.2.4.1].
Of course, this also means that if 𝑓 ∶ K → C is a functor of quasi-categories,

then its (co)limits are computed by the homotopy (co)limit of the functor

𝑅ℭ𝑓 ∶ 𝑅ℭK → 𝑅ℭC

between Kan-enriched categories. This is because (co)limits are preserved by cat-
egorical equivalences.

Example 7.13. When K = Λ0[2], one has an isomorphism K⊳ ≃ Δ[1] × Δ[1]. The
colimit of a diagram K → C is called a (homotopy) pushout, which is a square in
C, i.e. a map Δ[1] × Δ[1] → C. We denote pushouts by the usual notation 𝑦 ⊔𝑥 𝑧.
By the theorem, we have

HomC(𝑦 ⊔
𝑥

𝑧, 𝑤) ≃ HomC(𝑦, 𝑤) ×
HomC(𝑥,𝑤)

HomC(𝑧, 𝑤)

for any 𝑤 ∈ C, where the right hand side denotes a homotopy pullback of Kan
complexes. ◃

As a corollary, we have the following criterion that establishes certain ordinary
pushouts as homotopy pushouts.

Proposition 7.14. Let C be a simplicial model category. The ordinary pushout

𝑥 𝑦

𝑧 𝑦 ⊔
𝑥

𝑧
⌟

coincides with the homotopy pushout, if the map 𝑥 → 𝑦 is a cofibration.

Sketch of Proof. The key is to show that the map

HomC(𝑦, 𝑤) → HomC(𝑥, 𝑤)

is a fibration of simplicial sets, since it is known that an ordinary pullback along
a fibration of simplicial sets is a homotopy pullback. This will follow from the
axioms of a simplicial model category by a standard argument which we omit here.

◻

This gives an easy way to compute homotopy pushouts in a simplicial model
category. Namely, to compute 𝑦 ⊔𝑥 𝑧, one finds a weak equivalence 𝑦 → 𝑦′, such
that the composition 𝑥 → 𝑦 → 𝑦′ is a cofibration. Then the homotopy pushout
𝑦 ⊔𝑥 𝑧 is given by the ordinary pushout 𝑦′ ⊔𝑥 𝑧. For example, in Top, one has the
homotopy pushout

{∗} ⊔
𝑋

{∗} ≃ Σ𝑋.



7 Limits and adjunctions 61

Remark 7.15. For simplicial model categories, the ∞-categorical (co)limits coin-
cide with the derived functors of the (co)limit functors, provided that the projective
and injective model structures exist. ◃

Finally, we mention a formula that computes homotopy (co)limits directly.
Readers unfamiliar with (co)ends may skip to the next subsection.

Proposition 7.16. Let 𝑓 ∶ K → C be a functor of Kan-enriched categories. Assume
that C is tensored and cotensored over sSet. For example, this is always the case
if C is a simplicial model category.

• The homotopy colimit of 𝑓 is computed by the simplicially enriched coend

hocolim 𝑓 ≃ ∫
𝑘∈K

𝔑(K𝑘∕) ⊗ 𝑓(𝑘),

where ⊗ denotes the simplicial tensoring on C.
• The homotopy limit of 𝑓 is computed by the simplicially enriched end

holim 𝑓 ≃ ∫
𝑘∈K

𝑓(𝑘)𝔑(K∕𝑘),

where the powering denotes the simplicial powering on C.

See [Rie14].

Example 7.17. Let 𝐺 be a topological group acting on a space 𝑋. Then the ho-
motopy quotient 𝑋∕h𝐺 is defined by

𝑋∕h𝐺 ∶= (𝑋 × 𝐸𝐺)∕𝐺,

where 𝐸𝐺 denotes the universal 𝐺-bundle over 𝐵𝐺. This is exactly the homotopy
colimit of the corresponding functor

B𝐺 → Top,

where B𝐺 is the simplicial groupoid with a single object, whose mapping space is
Sing𝐺. ◃

Adjoint functors

Adjoint functors play a very important role in classical category theory. For exam-
ple, colimits and limits are two special cases of adjoint functors. For ∞-categories,
there is also a homotopical version of adjoint functors, which we will now discuss.

Definition 7.18. Let C,D be quasi-categories, and let

𝐹 ∶ C → D, 𝐺 ∶ D → C
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be two functors. We say that 𝐹 and 𝐺 are a pair of adjoint functors if there is an
equivalence of functors

HomD(𝐹 −, −) ≃ HomC(−, 𝐺−)∶ Cop × D → S.

Precisely, we mean that the functors

HomℭD(𝐹 −, −) and HomℭC(−, 𝐺−)

are weakly equivalent in the category

FunsSet(ℭ(Cop × D), sSet),

equipped with the projective model structure.

In order to understand the properties of adjoint functors, we will formulate
another two equivalent definitions.

Definition 7.19. Let C be a quasi-category.

• The quasi-category
𝒫 (C) ∶= Fun(Cop, S)

is called the category of presheaves on C, where S ∶= 𝔑(Kan).
• The map

𝑌 ∶ C → 𝒫 (C),
𝑥 ↦ ℎ𝑥 ∶= HomC(−, 𝑥)

is called the Yoneda embedding. Precisely, this map is defined by the sim-
plicially enriched functor

ℭ(C × Cop) → Kan,
(𝑥, 𝑦) ↦ 𝑅HomℭC(𝑦, 𝑥)

by passing to the adjoint, where 𝑅 denotes the fibrant replacement.
• A presheaf on C is called representable if it is equivalent to ℎ𝑥 for some

𝑥 ∈ C.

Via the Grothendieck construction (5.12), presheaves on C are equivalent to
right fibrations over C. Namely, given 𝐹 ∈ 𝒫 (C), the right fibration

UnC 𝐹 → C

has fibre (equivalent to) 𝐹 (𝑥) at 𝑥 ∈ C.

Definition 7.20. Let C be a quasi-category. A right fibration 𝑋 → C is repre-
sentable, if the presheaf

StC 𝑋 ∈ 𝒫 (C)

is representable.
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By definition, representable right fibrations are of the form UnC ℎ𝑥. If we look
at its fibres, we realise that it is equivalent to C∕𝑥, in the fibrewise sense, i.e. in
sSet∕C with the contravariant model structure (5.12).

Proposition 7.21. Any representable right fibration over C is equivalent to C∕𝑥 in
sSet∕C, where 𝑥 ∈ C is any representing object. ◻

Dually, a left fibration 𝑝∶ 𝑋 → C is representable if the right fibration
𝑝op ∶ 𝑋op → Cop is representable.

Proposition 7.22. LetC be a quasi-category, and let 𝑝∶ C̃ → C be a right fibration.

• 𝑝 is representable, if and only if C̃ has a terminal object.

• An object 𝑥 ∈ C represents 𝑝, if and only if there exists a terminal object 𝑥̃
of C̃, with 𝑝(𝑥̃) = 𝑥.

In particular, the full subcategory of C spanned by the representing objects of 𝑝 is
either empty or a contractible Kan complex.

Proof. We only need to prove the second part.
Suppose 𝑥 represents 𝑝. Then C̃ ≃ C∕𝑥 in sSet∕C. The object 𝟙𝑥 ∈ C∕𝑥 is

terminal, as desired.
Suppose such an object 𝑥̃ exists. It is a good exercise for the reader to show

that the map
C̃∕𝑥̃ → C∕𝑥

is a trivial fibration of simplicial sets. But since 𝑥̃ is terminal, we have another
trivial fibration C̃∕𝑥̃ → C̃, which implies that

C̃ ≃ C̃∕𝑥̃ ≃ C∕𝑥

as right fibrations over C. Therefore, 𝑝 is represented by 𝑥. ◻

We can now give the equivalent definitions of adjoint functors.

Proposition 7.23. LetC,D be two quasi-categories. Then a pair of adjoint functors
between C and D is equivalent to a left fibration

𝑝∶ 𝑋 → Cop × D,

such that

• 𝑝 is left representable: for any 𝑥 ∈ C, the slice

𝑝|𝑥×D ∶ 𝑝−1(𝑥 × D) → 𝑥 × D

is a representable left fibration.
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• 𝑝 is right representable: for any 𝑦 ∈ D, the slice

𝑝|Cop×𝑦 ∶ 𝑝−1(Cop × 𝑦) → Cop × 𝑦

is a representable left fibration.

In fact, 𝑝 is given by the Grothendieck construction of the functor

HomD(𝐹 −, −) ≃ HomC(−, 𝐺−)∶ Cop × D → S.

Proof. Clearly, a pair of adjoint functor gives rise to such a left fibration 𝑝.
Now suppose we are given such a left fibration 𝑝. Then for any 𝑥 ∈ C, we wish

to define 𝐹 𝑥 to be a representing object of 𝑝|𝑥×D, or equivalently, an initial object of
𝑝−1(𝑥 ×D). This is done as follows. Consider the full subcategory 𝑌 ⊂ 𝑋 spanned
by all such initial objects. One can prove that 𝑌 → Cop is a trivial fibration (by
repeated applications of the Grothendieck construction; the reader may try it), and
we may take 𝐹 to be any of its sections. The functor 𝐺 is defined analogously. ◻

Proposition 7.24. LetC,D be two quasi-categories. Then a pair of adjoint functors
between C and D is equivalent to a map

𝑝∶ 𝑀 → Δ[1],

such that

• There are categorical equivalences 𝑝−1(0) ≃ C and 𝑝−1(1) ≃ D.
• 𝑝 is a cocartesian fibration.

• 𝑝 is a cartesian fibration.

In fact, 𝑀 is given by 𝔑M, where the Kan-enriched categoryM is defined by

• Objects: pairs (𝑥, 0) for 𝑥 ∈ C and (𝑦, 1) for 𝑦 ∈ D.
• Morphism spaces:

HomM((𝑥, 0), (𝑦, 0)) ∶= Hom𝑅ℭC(𝑥, 𝑦),
HomM((𝑥, 1), (𝑦, 1)) ∶= Hom𝑅ℭD(𝑥, 𝑦),
HomM((𝑥, 0), (𝑦, 1)) ∶= Hom𝑅ℭD(𝐹 𝑥, 𝑦) ≃ Hom𝑅ℭC(𝑥, 𝐺𝑦),
HomM((𝑥, 1), (𝑦, 0)) ∶= ∅.

Proof. Assume we are given 𝑀 . Then it is straightforward to recover the ad-
joint pair, since (co)cartesian fibrations give rise to transport functors, via the
Grothendieck construction.

It remains to show that this procedure is inverse to the construction of 𝑀 in the
formulation of the proposition. We omit these verifications. ◻
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Proposition 7.25. Let K,C be quasi-categories. Suppose that every functor K → C
has a colimit. Then the constant functor

const∶ C → Fun(K,C)

admits a left adjoint, which is the colimit functor.

Proof. We use the equivalent definition of adjoint functors given in (7.23). The
functor const gives a right representable left fibration

𝑋 → Fun(K,C)op × C.

It suffices to show that it is also left representable. But note that

𝑋|𝑓×C ≃ C𝑓∕,

and left representability is equivalent toC𝑓∕ having an initial object, which is equiv-
alent to C having colimits. ◻

Remark 7.26. Let C,D be simplicial model categories, and let (𝐹 ⊣ 𝐺) be a
Quillen adjunction between them. Then 𝐹 and 𝐺 give rise to a pair of adjoint
functors between the quasi-categories 𝔑(Ccf) and 𝔑(Dcf). ◃

8 Stable categories

In topology, we have homotopy pushout and pullback diagrams

𝑋 ∗

∗ Σ𝑋
⌟ and

Ω𝑋 ∗

∗ 𝑋 ,

⌜

as has been shown in the last section. In a stable category, we instead have the
pushout-pullback diagram

𝑋 ∗

∗ 𝑋[1] ,

⌜ ⌟

which means that Σ and Ω are inverse to each other. For example, we will see that
for cochain complexes, the functors Σ and Ω coincide with the shifting functors [1]
and [−1], and thus, the category of cochain complexes is an example of a stable
category.

For any category with finite limits, we will describe a stabilisation procedure,
that turns the category into a stable one. For example, the stabilisation of the cat-
egory of topological spaces will be the category of spectra, which we will define
below.
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From now on, when referring to quasi-categories, we will change our terminol-
ogy to “(∞, 1)-categories”, or “∞-categories” for short. This means that we are
not only studying one particular model; we are also talking about the behaviour of
an intrinsic notion of (∞, 1)-categories, which is independent of models. However,
we only provide rigorous formulations for quasi-categories.

Stable categories

Definition 8.1. An∞-category C is said to be pointed, if it has a zero object 0 ∈ C,
i.e. an object that is both initial and terminal.

Definition 8.2. Let C be a pointed ∞-category.

• A triangle in C is a diagram

𝑋 𝑌

0 𝑍 .

• A cofibre sequence in C is a triangle that is also a pushout square. In this
case, we say that 𝑍 is the homotopy cofibre of the map 𝑋 → 𝑌 .

• A fibre sequence in C is a triangle that is also a pullback square. In this
case, we say that 𝑋 is the homotopy fibre of the map 𝑌 → 𝑍.

Definition 8.3. A stable ∞-category is a pointed ∞-category C, such that

• Every morphism in C has a homotopy cofibre and a homotopy fibre.
• A triangle in C is a cofibre sequence if and only if it is a fibre sequence.

Definition 8.4. Let C be a pointed ∞-category. The functors Σ∶ C → C and
Ω∶ C → C are defined by

Σ𝑋 ∶= 0 ⊔
𝑋

0 and Ω𝑋 ∶= 0 ×
𝑋

0.

As one might expect, Σ and Ω are adjoint to each other, since for any 𝑋, 𝑌 ∈ C,
one has

HomC(Σ𝑋, 𝑌 ) ≃ {∗} ×
HomC(𝑋,𝑌 )

{∗} ≃ HomC(𝑋, Ω𝑌 ).

If C is stable, then Σ and Ω are inverse to each other. In this case, we denote

𝑋[1] ∶= Σ𝑋 and 𝑋[−1] ∶= Ω𝑋.

For a non-negative integer 𝑛, we denote

𝑋[𝑛] ∶= Σ𝑛𝑋 and 𝑋[−𝑛] ∶= Ω𝑛𝑋.

Theorem 8.5. Let C be a pointed ∞-category. Then the following are equivalent.
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• C is stable.
• C admits pushouts and Σ is an equivalence.
• C admits pullbacks and Ω is an equivalence.
• C admits pushouts and pullbacks; a square in C is a pushout square, if and

only if it is a pullback square.

See [Lur17, Proposition 1.1.3.4 and Corollary 1.4.2.27].

Definition 8.6. Let C,D be stable ∞-categories. A functor 𝑓 ∶ C → D is said to
be exact, if it preserves the zero object, and preserves (co)fibre sequences.

Homotopy category of a stable category

Our goal in this subsection is to prove the following theorem.

Theorem 8.7. Let C be a stable ∞-category. Then the homotopy category Ho(C)
carries a natural structure of a triangulated category.

Proof. First, we need to show that Ho(C) is an additive category.

• Ho(C) has finite coproducts.
By (7.8), a coproduct in C gives rise to a coproduct in Ho(C). By definition,
C has an initial object. Thus it suffices to show that for any 𝑋, 𝑌 ∈ C, the
coproduct 𝑋 ⊔ 𝑌 exists. We form the pushout diagram

𝑋[−1] 𝑌

0 𝑍

0

⌜
⌟

in C. Then 𝑍 is the coproduct 𝑋 ⊔ 𝑌 , since

𝑍 ≃ cofibre(𝑋[−1] 0−→ 𝑌 )
≃ cofibre(𝑋[−1] → 0) ⊔ cofibre(0 → 𝑌 )
≃ 𝑋 ⊔ 𝑌 ,

where the second step uses the fact that taking the cofibre commutes with
colimits, as can be checked by the definition of homotopy colimits.

• Ho(C) is an additive category.
For any 𝑋, 𝑌 ∈ C, note that

HomC(𝑋[1], 𝑌 ) ≃ HomC(0, 𝑌 ) ×
HomC(𝑋,𝑌 )

HomC(0, 𝑌 )

≃ ΩHomC(𝑋, 𝑌 ).
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Therefore,

𝜋0 HomC(𝑋, 𝑌 ) ≃ 𝜋1 HomC(𝑋[−1], 𝑌 ) ≃ 𝜋2 HomC(𝑋[−2], 𝑌 ) ≃ ⋯

is an abelian group. We leave it to the reader to check that composition is
bilinear.

• For a map 𝑓 ∶ 𝑋 → 𝑌 , what is −𝑓?
A map from 𝑋 to 𝑌 can be seen as a diagram

𝑋[−1] 0

0 𝑌 .

If we swap the two 0’s, the map will reverse its sign. Precisely, if this square
corresponds to the map 𝑓 , then the transpose of this square will correspond
to −𝑓 . This is because the group structure is defined by the identification

HomC(𝑋, 𝑌 ) ≃ {∗} ×
HomC(𝑋[−1],𝑌 )

{∗} ≃ ΩHomC(𝑋[−1], 𝑌 ),

and if the two {∗}’s are swapped, then the loop space will have its loops
reversed.

Next, we define a triangulated structure on Ho(C), and we verify the axioms of
a triangulated category.

• Distinguished triangles.
We define a triangle 𝑋 → 𝑌 → 𝑍 → 𝑋[1] in Ho(C) to be a distinguished
triangle, if it is isomorphic to one that can be lifted to a diagram

𝑋 𝑌 0

0 𝑍 𝑊

⌜ ⌟ ⌜ ⌟

in C, where 𝑊 is equivalent to 𝑋[−1] since the outer square is a pushout-
pullback.

• (TR 1)

– Distinguished triangles are stable under isomorphisms.
– For any object 𝑋, the following triangle is distinguished:

𝑋
1𝑋−−→ 𝑋 → 0 → 𝑋[1].

– Every map 𝑋 → 𝑌 extends to a distinguished triangle

𝑋 → 𝑌 → 𝑍 → 𝑋[1].
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These properties are all obvious.
• (TR 2) If

𝑋 𝑓−→ 𝑌 𝑔−→ 𝑍 ℎ−→ 𝑋[1]

is a distinguished triangle, so is

𝑌 𝑔−→ 𝑍 ℎ−→ 𝑋[1] −𝑓[1]−−−−→ 𝑌 [1].

To prove this, let us form the diagram

𝑋 𝑌 0

0 𝑍 𝑊

0 𝑉

⌜ ⌟ ⌜ ⌟

⌜ ⌟

in C. The two outer rectangles establish equivalences 𝑊 ≃ 𝑋[1] and 𝑉 ≃
𝑌 [1]. The map 𝑊 → 𝑉 in the diagram is 𝑓[1], since it is induced by the
map of diagrams

𝑋 0

0

⟶
𝑌 0

0

in C. However, after transposing the diagram to match the definition of dis-
tinguished triangles, the map 𝑊 → 𝑉 becomes −𝑓[1].

• (TR 3) Given a diagram

𝑋 𝑌 𝑍 𝑋[1]

𝑋′ 𝑌 ′ 𝑍′ 𝑋′[1]
𝑓 𝑓[1]

without the dashed arrow, where the two rows are distinguished triangles,
there exists a dashed arrow making the diagram commute.

This is because taking cofibres in C is functorial.
• (TR 4) The octahedral axiom.

We omit the proof here, but it is not difficult.

We conclude that Ho(C) is a triangulated category. ◻
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Spectra and stable homotopy theory

In this subsection, we review the classical theory of topological spectra and sta-
ble homotopy theory, as a model for the stabilisation procedure that will apply to
general stable ∞-categories.

Stable homotopy theory is concerned with properties of a topological space
that stabilise after applying the suspension functor sufficiently many times. For
example, the stable homotopy groups of a pointed topological space 𝑋 are defined
by

𝜋s
𝑛(𝑋) ∶= colim

𝑘→+∞
𝜋𝑛+𝑘(Σ𝑘𝑋)

for all 𝑛 ∈ ℤ. For example, the Freudenthal suspension theorem states that

𝜋s
𝑛(𝑆0) ≃ 𝜋2𝑛+2(𝑆𝑛+2) ≃ 𝜋2𝑛+3(𝑆𝑛+3) ≃ ⋯ .

Topological spectra contain the data that encodes these stabilised properties of a
topological space.

Definition 8.8. A spectrum 𝐸 consists of

• A series of pointed topological spaces

𝐸0, 𝐸1, 𝐸2, … .

• For each 𝑛 ≥ 0, a map
𝜎𝑛 ∶ Σ𝐸𝑛 → 𝐸𝑛+1.

A map of spectra 𝑓 between two spectra 𝐸 and 𝐹 consists of a map

𝑓𝑛 ∶ 𝐸𝑛 → 𝐹𝑛

for each 𝑛 ≥ 0, such that 𝜎𝑛 ∘ Σ𝑓𝑛 = 𝑓𝑛+1 ∘ 𝜎𝑛 for all 𝑛 ≥ 0.

The category of spectra is denoted by Sp.

Example 8.9. Let 𝑋 be a pointed topological space. The suspension spec-
trum Σ∞𝑋 is defined by

(Σ∞𝑋)𝑛 ∶= Σ𝑛𝑋,

with 𝜎𝑛 ∶= 1Σ𝑛+1𝑋 . The purpose of the notation Σ∞ is to signify that we are looking
for the properties of Σ𝑛𝑋 as 𝑛 → ∞.

The sphere spectrum 𝕊 is defined by

𝕊 ∶= Σ∞𝑆0,

so that 𝕊𝑛 ≃ 𝑆𝑛. ◃
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Definition 8.10. The stable homotopy groups of a spectrum 𝐸 are defined by

𝜋s
𝑛(𝐸) ∶= colim

𝑘→+∞
𝜋𝑛(𝐸𝑘)

for all 𝑛 ∈ ℤ.

For example, we have
𝜋𝑛(Σ∞𝑋) ≃ 𝜋s

𝑛(𝑋)

for any pointed topological space 𝑋.
Note that the suspension functor Σ and the shifting functor [1] induce the same

maps on stable homotopy groups. We will see that they are equivalent up to homo-
topy, given a certain model structure on Sp.

Definition 8.11. A spectrum 𝐸 is called an 𝛀-spectrum, if the maps

𝐸𝑛 → Ω𝐸𝑛+1

corresponding to 𝜎𝑛 are weak equivalences for all 𝑛 ≥ 0.

In this case, we write Ω∞𝐸 ∶= 𝐸0. For any 𝑛 ≥ 0, we have 𝜋𝑛(𝐸) ≃ 𝜋𝑛(𝐸0).

Theorem 8.12. The category Sp has the stable model structure, with

• W = {maps that induce isomorphisms of all stable homotopy groups}.
• Cof = {degreewise cofibrations}.
• The fibrant objects are precisely the Ω-spectra.

Moreover, the adjoint pair

Sp Sp
Σ

⊥
Ω

is a Quillen equivalence, and their derived functors are isomorphic to the shifting
functors:

𝕃Σ ≃ [1] and ℝΩ ≃ [−1].

Corollary 8.13. The ∞-category of spectra, presented by the model category of
spectra, is a stable ∞-category.

Proof. It suffices to check the existence of homotopy (co)fibres. However, by def-
inition, every model category admits arbitrary (co)limits. ◻

As a result, the homotopy category Ho(Sp) has a triangulated structure.
Spectra can also be viewed from another perspective, namely, as representing

objects of generalised cohomology theories.
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Definition 8.14. A generalised cohomology theory is a family of functors

𝐸𝑛 ∶ Topop∗ → Ab,

where 𝑛 ∈ ℤ, and Top∗ denotes the category of pointed topological spaces, satis-
fying the following axioms.

• (Homotopy) If 𝑓 ∶ 𝑋 → 𝑌 is a weak homotopy equivalence, then 𝐸•(𝑓 ) is
an isomorphism.

• (Exactness) A homotopy cofibre sequence 𝑋 → 𝑌 → 𝑍 induces an exact
sequence

𝐸•(𝑍) → 𝐸•(𝑌 ) → 𝐸•(𝑋).

• (Suspension) There is a natural isomorphism

𝐸•+1(Σ𝑋) ≃ 𝐸•(𝑋).

• (Additivity) 𝐸• takes coproducts to products:

𝐸•(⋁𝛼 𝑋𝛼) ≃ ∏𝛼 𝐸•(𝑋𝛼).

For example, reduced singular cohomology with coefficients in any abelian
group is a generalised cohomology theory. 𝐾-theory is also a generalised coho-
mology theory.

Theorem 8.15 (Brown). Every generalised cohomology theory 𝐸• is represented
by a spectrum 𝐸, in the sense that

𝐸𝑛(𝑋) ≃ HomHo(Sp)(Σ∞𝑋[−𝑛], 𝐸)

for any topological space 𝑋.

Therefore, the category of spectra, which we regard as a “stabilisation” of the
category of topological spaces, is equivalent (in the homotopical sense) to the cat-
egory of generalised cohomology theories of topological spaces.

Stabilisation

LetC be an ∞-category with finite limits. The goal of this subsection is to construct
a stable ∞-category Sp(C) of spectrum objects of C, together with a functor

Ω∞ ∶ Sp(C) → C,

which is universal in the sense that for any stable ∞-category D, every functor
D → C preserving finite limits will factor through the functor Ω∞ uniquely.

Before we give the general construction, let us introduce another perspective
from which topological spectra can be viewed.



8 Stable categories 73

Let 𝐸 be an Ω-spectrum. Let Topfin∗ be the category of pointed topological
spaces which are homotopy equivalent to finite CW complexes. Then we may de-
fine a functor

𝐹 ∶ Topfin∗ → Top∗,

sending 𝑆𝑛 to the space 𝐸𝑛. To define such a functor, notice that such a functor
sends a pushout square to a pullback square:

𝑆𝑛 0

0 𝑆𝑛+1
⌟

𝐹
⟼

𝐸𝑛 0

0 𝐸𝑛+1 .

⌜

If we require that 𝐹 sends any pushout square to a pullback square, then 𝐹 will
be uniquely defined (up to an equivalence), assuming that the spaces 𝐸𝑛 can be
delooped arbitrarily many times, which is the case since we assumed that 𝐸 is an
Ω-spectrum. (The reader may prove this as an exercise.)

The requirement that 𝐹 should send a pushout square to a pullback square is
analogous to the excision property of classical homology theories. Therefore, spec-
tra may be seen as “homology theories” of topological spaces, with values in topo-
logical spaces.

In general, we will define a spectrum object of C to be a “homology theory” of
topological spaces, with values in C.

Definition 8.16. Let C and D be ∞-categories.

• Suppose C has pushouts. A functor 𝐹 ∶ C → D is excisive if it sends pushout
squares to pullback squares.

• Suppose C has a zero object. A functor 𝐹 ∶ C → D is reduced if it preserves
the zero object.

We denote by
Fun∗(C,D) and Exc∗(C,D)

the categories of reduced functors and reduced excisive functors from C to D, re-
spectively, as full subcategories of Fun(C,D).

Recall that the category of spaces was defined to be S ∶= 𝔑(Kan).

Definition 8.17. The category of finite spaces, denoted by Sfin, is defined to be the
full subcategory of S consisting of Kan complexes whose geometric realisations are
equivalent to finite CW complexes. Let

Sfin∗ ∶= (Sfin){∗}∕

be the category of pointed finite spaces.
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Definition 8.18. Let C be an ∞-category. The category of spectrum objects of C
is defined by

Sp(C) ∶= Exc∗(Sfin∗ ,C).

The functor
Ω∞ ∶ Sp(C) → C

is defined by evaluating at 𝑆0 ∈ Sfin∗ .

For example, the above discussion suggests that we should have

Sp ≃ Sp(S∗) ≃ Sp(Top∗).

Remark 8.19. In fact, a reduced excisive functor 𝐸 ∶ Sfin∗ → C is determined by the
objects 𝐸𝑛 ∶= 𝐸(𝑆𝑛), together with induced equivalences 𝐸𝑛

∼→ Ω𝐸𝑛+1. There-
fore, one can show that Sp(C) is equivalent to the homotopy limit

Sp(C) ≃ lim(⋯ → C
Ω−→ C

Ω−→ C). ◃

Theorem 8.20. Let C and D be ∞-categories.

• The category Sp(C) is stable if C admits finite limits.
• More generally, the category Exc∗(C,D) is stable if C admits finite colimits

and D admits finite limits.

Proof. It suffices to prove the second part. The functors ΣC and ΩD induce func-
tors on Exc∗(C,D). It is known that (co)limits in Fun(C,D) can be computed in
D provided that D has these (co)limits. Therefore, the functor ΩD on Exc∗(C,D)
coincides with its own Ω functor. Let 𝐹 ∈ Exc∗(C,D). Then for any 𝑋 ∈ C, we
have a pullback square

𝐹 𝑋 0

0 𝐹 ΣC𝑋 ,

⌜

which establishes an equivalence

𝐹 𝑋 ≃ ΩD𝐹 ΣC𝑋.

This means that ΣC is inverse to ΩD. By (8.5), Exc∗(C,D) is stable. ◻

Proposition 8.21. Let C be an ∞-category with finite limits. Then C is stable if
and only if the functor Ω∞ ∶ Sp(C) → C is an equivalence.

Proof. Omitted. ◻

Proposition 8.22. Let C and D be ∞-categories.
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• If C is stable and D has finite limits, then the functor Ω∞ ∶ Sp(C) → C
induces an equivalence

Funl.ex.(C,Sp(D)) ≃ Funl.ex.(C,D),

where Funl.ex. denotes the category of left exact functors, i.e. functors that
preserve finite limits.

• More generally, if C is pointed and has finite limits, andD has finite colimits,
then the functor Ω∞ ∶ Sp(D) → D induces an equivalence

Exc∗(C,Sp(D)) ≃ Exc∗(C,D).

Proof. It suffices to prove the second part. Since Exc∗(C,D) is stable, we have

Exc∗(C,D) ≃ Sp(Exc∗(C,D))
≃ Exc∗(Sfin∗ , Exc∗(C,D))
≃ Exc∗(C, Exc∗(Sfin∗ ,D))
≃ Exc∗(C, Sp(D)). ◻

Therefore, we have proved the following.
Theorem 8.23. There is a pair of adjoint functors

Catstable∞ Catfin.lim.
∞ ,

𝑖

⊥
Sp

where

• Catstable∞ denotes the subcategory of Cat∞ consisting of stable ∞-categories
and exact functors between them.

• Catfin.lim.
∞ denotes the subcategory ofCat∞ consisting of∞-categories having

finite limits and left exact functors between them.
• 𝑖 denotes the inclusion functor, and Sp is the functor constructed above,

called the stabilisation functor. ◻
In fact, this can be seen as an adjunction of (∞, 2)-categories, since we have

shown the equivalence of mapping spaces as (∞, 1)-categories, not just as homo-
topy types.

9 Dold–Kan correspondence

The following two sections will be focused on the study of homological algebra.
Our goal is to establish homological algebra as a special case of homotopical al-
gebra. We will construct and study the ∞-category of chain complexes, and the
∞-categorical version of the derived category.
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In this section, we start from the Dold–Kan correspondence, which is a classical
result in homological algebra that establishes an equivalence between chain com-
plexes in an abelian category A and simplicial objects in A. It gives an equivalence
of (ordinary) categories

Ch(A)≥0
DK−−−→
̃

Fun( op,A),

whereCh(A)≥0 denotes the full subcategory ofCh(A) consisting of chain complexes
that terminate at the 0th term. This equivalence will relate the homotopy theory of
chain complexes to the homotopy theory of simplicial sets.

t‐structures

Definition 9.1. Let C be a triangulated category. A t-structure on C consists of
two full subcategories

C≤0, C≥0 ⊂ C,

satisfying the following axioms: if we denote

C≤𝑛 ∶= C≤0[𝑛] and C≥𝑛 ∶= C≥0[𝑛]

for 𝑛 ∈ ℤ, then

• C≤0 and C≥0 are stable under isomorphisms.

• C≤0 ⊂ C≤1 and C≥1 ⊂ C≥0.

• If 𝑋 ∈ C≤0 and 𝑌 ∈ C≥1, then HomC(𝑋, 𝑌 ) = 0.
• For every 𝑋 ∈ C, there exists a distinguished triangle

𝑋≤0 → 𝑋 → 𝑋≥1,

such that 𝑋≤0 ∈ C≤0 and 𝑋≥1 ∈ C≥1.

For example, if C = Ch(A) is the category of cochain complexes in an abelian
categoryA, then wemay takeC≤0 to be those cochain complexes 𝑋 with 𝑋𝑛 = 0 for
all 𝑛 > 0. Similarly we can define C≥0. Then the first three axioms are immediate,
and for the fourth one, we may take

𝑋≤0 ∶= 𝜏≤0𝑋 and 𝑋≥1 ∶= 𝜏≥1𝑋,

where 𝜏≤𝑛 and 𝜏≥𝑛 are the truncation functors, defined by

𝜏≤𝑛𝑋 ∶= (⋯ → 𝑋𝑛−2 𝑑𝑛−2−−−→ 𝑋𝑛−1 𝑑𝑛−1−−−→ ker 𝑑𝑛 → 0 → ⋯),

𝜏≥𝑛𝑋 ∶= (⋯ → 0 → coker 𝑑𝑛−1
𝑑𝑛−→ 𝑋𝑛+1 𝑑𝑛+1−−−→ 𝑋𝑛+2 → ⋯).
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Remark 9.2. If 𝑋 ∈ C≤0 and 𝑌 ∈ C≥1, we require that HomC(𝑋, 𝑌 ) = 0, but
not HomC(𝑌 , 𝑋) = 0, and here is a justification. Let us look at C = Ch(A) as an
example. In this case, although the only chain map from 𝑌 to 𝑋 is zero, there may
exist nonzero chain homotopies and higher homotopies. ◃

Notation 9.3. Sometimes it is more convenient to use homological indexing in-
stead of cohomological indexing. Therefore, we introduce the following notation.
For a triangulated category C with a t-structure, we denote

C≥𝑛 ∶= C≤−𝑛 and C≤𝑛 ∶= C≥−𝑛.

Using this notation, we have C≥𝑛 = C≥0[−𝑛], etc. ◃

Definition 9.4. Let C be a stable ∞-category. A t-structure on C is a t-structure
on the triangulated category Ho(C).

An important property of a t-structure is that it establishes C≥𝑛 as a localisation
of C, in the sense that it is equivalent to C[W−1] for some collectionW of arrows
in C.

Definition 9.5. A functor 𝑓 ∶ C → D between∞-categories is called a localisation
functor, if it has a fully faithful right adjoint.

Remark 9.6. This definition of localisation is narrower than what we called lo-
calisations before, i.e. functors obtained by inverting some of the arrows. In fact,
if 𝑓 is a localisation functor in this new sense, then 𝑓 is obtained by inverting all
morphisms in C which are sent to equivalences in D. For a proof of this fact, see
[Lur09, Proposition 5.2.7.12]. ◃

Theorem 9.7. Let C be a stable ∞-category with a t-structure, and let 𝑛 ∈ ℤ. Then
there exists a localisation functor

𝜏≥𝑛 ∶ C → C≥𝑛,

called the truncation functor, which is left adjoint to the inclusion functor.

Proof. Omitted. See [Lur17, Proposition 1.2.1.5]. ◻

As a corollary, the subcategory C≥𝑛 of C is stable under limits which exist in C.
Dually, C≤𝑛 is stable under colimits.

Remark 9.8. One might expect that C is the stabilisation of the subcategory C≥0 =
C≤0. However, by (8.19), this is true if and only if

C ≃ lim
𝑛→+∞

C≥−𝑛.

For example, this is true for the category of chain complexes, but not for the cate-
gory of bounded chain complexes.
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Definition 9.9. Let C be a stable ∞-category with a t-structure. The heart of C is
defined to be

C♡ ∶= C≥0 ∩ C≤0 ⊂ C.

We define a family of functors

𝜋𝑛 ∶ C → C♡

by 𝜋0 ∶= 𝜏≥0𝜏≤0 ≃ 𝜏≤0𝜏≥0, and 𝜋𝑛 ∶= 𝜋0 ∘ [−𝑛].
For a proof of 𝜏≥0𝜏≤0 ≃ 𝜏≤0𝜏≥0, see [Lur17, Proposition 1.2.1.10].
For example, if C = Ch(A), then C♡ ≃ A, and 𝜋𝑛 takes the (−𝑛)-th cohomology

group, i.e. the 𝑛-th homology group, of a chain complex.

Dold–Kan correspondence

Let A be an abelian category. In this section, we will define a functor

DK∶ Ch(A)≥0 → Fun( op,A),

and we will prove that this functor is an equivalence of categories.

Construction 9.10. Let A be an abelian category, and let 𝑋• ∈ Ch(A)≥0. The
simplicial object

DK•(𝑋) ∈ Fun( op,A)

is represented by the following picture.

𝑋0
𝑋1

𝑋2

𝑋3
⋯

0

0

0

0
0

0 0 0

𝑑0=𝜕1 𝑑0=𝜕2

𝑑0=𝜕3

A formal definition may go as follows.

• For every 𝑛 ≥ 0, the space of 𝑛-simplices is given by

DK𝑛(𝑋) ∶= ⨁
𝛼 ∶ [𝑛]→[𝑘]
surjective

𝑋𝑘.
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• For every morphism 𝛽 ∶ [𝑛′] → [𝑛] in , the induced map

𝛽∗ ∶ DK𝑛(𝑋) → DK𝑛′ (𝑋)

is given by the maps
𝑓𝛼,𝛼′ ∶ 𝑋𝑘 → 𝑋𝑘′

for surjective maps 𝛼 ∶ [𝑛] → [𝑘] and 𝛼′ ∶ [𝑛′] → [𝑘′] in , where

𝑓𝛼,𝛼′ ∶=

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

1𝑋𝑘 , if 𝑘′ = 𝑘 and
[𝑛′] [𝑛]

[𝑘′] [𝑘]

commutes,

𝜕𝑘, if 𝑘′ = 𝑘 − 1 and
[𝑛′] [𝑛]

[𝑘′] [𝑘]𝑑0
commutes,

0, otherwise,

where 𝜕𝑘 ∶ 𝑋𝑘 → 𝑋𝑘−1 denotes the differential, and 𝑑0 ∶ [𝑘 − 1] → [𝑘] is
the map sending 𝑖 ∈ [𝑘 − 1] to 𝑖 + 1 ∈ [𝑘]. ◃

By construction, every non-degenerate simplex in DK𝑛(𝑋) can be written as
the sum of a nonzero element in 𝑋𝑛 and some degenerate 𝑛-simplices.
Example 9.11. Let 𝑋 be the chain complex whose only nonzero term is a ℤ at the
𝑛-th place. Then

DK•(𝑋) ≃ ℤΔ[𝑛]∕ℤ𝜕Δ[𝑛],

where ℤ(−)∶ sSet → sAb denotes the free functor. This is quite obvious if we
consider the picture above. ◃

Next, we construct an inverse to the functor DK, sending a simplicial object to
its corresponding chain complex.
Definition 9.12. Let 𝑋 be a simplicial object in A.

• The simplicial chain complex of 𝑋 is the chain complex

𝐶•(𝑋) ∈ Ch(A)≥0,

given by

𝐶𝑛(𝑋) ∶= 𝑋𝑛 and 𝜕𝑛 ∶=
𝑛
∑
𝑖=0

(−1)𝑖𝑑𝑖.

• The normalised chain complex of 𝑋, or the inverse Dold–Kan construc-
tion of 𝑋, is the chain complex

DK•(𝑋) ∈ Ch(A)≥0,

given by

DK𝑛(𝑋) ∶= ⋂
0<𝑖≤𝑛

ker(𝑑𝑖 ∶ 𝑋𝑛 → 𝑋𝑛−1) and 𝜕𝑛 ∶= 𝑑0.
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It might look as if DK(𝑋) contains less information than 𝑋. However, we will
prove that the lost information is inessential, and can be recovered from the group
structure of 𝑋 (referring to the case A = Ab, of course).

Theorem 9.13. The functors

Ch(A)≥0 Fun( op,A)
DK

≃
DK

are inverse to each other, up to a natural isomorphism.

Proof. It is clear that DK ∘DK = 𝟙. We need to show that DK ∘ DK = 𝟙. The proof
is elementary and not very inspiring, so we omit the argument here. See [Lur17,
Lemma 1.2.3.13]. ◻

For stable∞‐categories
There is an analogous result of the Dold–Kan correspondence in the context of sta-
ble ∞-categories. Namely, for a stable ∞-category C, we will define the category
Ch(C)≥0 of filtered objects in C, and the result states that

Ch(C)≥0 ≃ Fun(𝔑 op,C)

as ∞-categories.
Let 𝐼 be a linearly ordered set (typically, one takes 𝐼 = ℤ or ℤ≥0). Denote

𝐼 [1] ∶= {(𝑖, 𝑗) ∣ 𝑖 ≤ 𝑗 ∈ 𝐼},

with (𝑖, 𝑗) ≤ (𝑖′, 𝑗′) if and only if 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗′.

Definition 9.14. Let C be a pointed ∞-category, and let 𝐼 be a linearly ordered
set. An 𝑰-complex in C is a functor

𝐹 ∶ 𝔑(𝐼 [1]) → C,

such that

• For any 𝑖 ∈ 𝐼 , we have 𝐹 (𝑖, 𝑖) ≃ 0.
• For any 𝑖 ≤ 𝑗 ≤ 𝑘, the diagram

𝐹 (𝑖, 𝑗) 𝐹 (𝑖, 𝑘)

0 ≃ 𝐹 (𝑗, 𝑗) 𝐹 (𝑗, 𝑘)
⌟

is a pushout square, i.e. a cofibre sequence.
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Let Ch(𝐼,C) denote the full subcategory of Fun(𝔑(𝐼 [1]),C) spanned by all the 𝐼-
complexes.

This terminology is justified by the following example.

Example 9.15. LetC be a stable ∞-category, and let 𝑋 ∈ Ch(ℤ,C) be aℤ-complex
in C. Then for any 𝑛 ∈ ℤ, we have a diagram

𝑋(𝑛 − 1, 𝑛) 𝑋(𝑛 − 1, 𝑛 + 1) 0

0 𝑋(𝑛, 𝑛 + 1) 𝑋(𝑛 − 1, 𝑛)[1]
⌟ ⌟

𝜕

in C. Therefore, if we set

𝑋𝑛 ∶= 𝑋(𝑛 − 1, 𝑛)[−𝑛],

then we obtain a chain complex

⋯ → 𝑋1
𝜕−→ 𝑋0

𝜕−→ 𝑋−1 → ⋯

in Ho(C). The fact that 𝜕2 = 0 follows from the equalities

𝜕2 = (𝑋(𝑛, 𝑛 + 1) → 𝑋(𝑛 − 1, 𝑛)[1] → 𝑋(𝑛 − 2, 𝑛 − 1)[2])
= (𝑋(𝑛, 𝑛 + 1) → 𝑋(𝑛 − 2, 𝑛)[1] → 𝑋(𝑛 − 1, 𝑛)[1] → 𝑋(𝑛 − 2, 𝑛 − 1)[2])
= (𝑋(𝑛, 𝑛 + 1) → 𝑋(𝑛 − 2, 𝑛)[1] 0−→ 𝑋(𝑛 − 2, 𝑛 − 1)[2])
= 0

in Ho(C). ◃

Remark 9.16. If 𝐼 has a least object −∞, then

Ch(𝐼,C) ≃ Fun(𝐼 ⧵ {−∞},C),

since every 𝐼-complex 𝑋 is determined by the values 𝑋(−∞, 𝑖) for all 𝑖 ∈ 𝐼 ⧵
{−∞}. Namely, one has

𝑋(𝑖, 𝑗) ≃ cofibre(𝑋(−∞, 𝑖) → 𝑋(−∞, 𝑗))

for all 𝑖 ≤ 𝑗 in 𝐼 . ◃

Example 9.17. Let us consider the case

𝐼 = ℤ≥0 ∪ {−∞} and C = Ch(Ab).
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Then by the previous example, an 𝐼-complex in C can be seen as a chain complex
of chain complexes in Ab. Let 𝑋 be an 𝐼-complex, which is a diagram

0 𝑋0 𝑋(−∞, 1) 𝑋(−∞, 2) ⋯

0 𝑋1[1] 𝑋(0, 2) ⋯

0 𝑋2[2] ⋯

0 ⋯

⌟ ⌟

⌟

in C. The upper-left pushout square implies that we must have

𝑋(−∞, 1) ≃ cofibre(𝜕 ∶ 𝑋1 → 𝑋0).

However, as we will show in the next section, the homotopy cofibre in the category
of chain complexes is equivalent to the mapping cone

cone(𝜕) ≃ 𝑋0 ⊕ 𝑋1[1],

where ≃ denotes an isomorphism of graded abelian groups. Therefore, the first row
of the diagram may be seen as a sequence

0 → 𝑋0 → 𝑋0 ⊕ 𝑋1[1] → 𝑋0 ⊕ 𝑋1[1] ⊕ 𝑋2[2] → ⋯

of graded abelian groups, in which each term is equipped with a twisted differen-
tial. Therefore, an 𝐼-complex in C may also be seen as a filtered chain complex of
abelian groups. ◃

In homological algebra, a filtered chain complex produces a spectral sequence,
which computes the homology of the total complex. This generalises to stable ∞-
categories as well, establishing a further connection between homological algebra
and stable homotopy theory.

Definition 9.18. Let C be a stable ∞-category. A filtered object in C is a functor

𝑋 ∶ 𝔑(ℤ) → C.

We may regard 𝑋 as a ℤ-complex by first obtaining a (ℤ ∪ {−∞})-complex, and
then restricting to ℤ[1] ⊂ (ℤ ∪ {−∞})[1].

Let C be a stable ∞-category with a t-structure. Suppose that the heart C♡ is
equivalent to 𝔑(A) for an abelian category A.

Let 𝑋 be a filtered object in C. Write

𝐸𝑟
𝑝,𝑞 ∶= im(𝜋𝑝+𝑞𝑋(𝑝 − 𝑟, 𝑝) → 𝜋𝑝+𝑞𝑋(𝑝 − 1, 𝑝 + 𝑟 − 1)) ∈ A
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for all 𝑟 ≥ 1 and 𝑝, 𝑞 ∈ ℤ. Define

𝑑𝑟 ∶ 𝐸𝑟
𝑝,𝑞 → 𝐸𝑟

𝑝−𝑟,𝑞+𝑟−1

by the commutative diagram

𝜋𝑝+𝑞𝑋(𝑝 − 𝑟, 𝑝) 𝜋𝑝+𝑞𝑋(𝑝 − 1, 𝑝 + 𝑟 − 1)

𝜋𝑝+𝑞−1𝑋(𝑝 − 2𝑟, 𝑝 − 𝑟) 𝜋𝑝+𝑞−1𝑋(𝑝 − 𝑟 − 1, 𝑝 − 1) ,
𝛿 𝛿

where 𝛿 denotes the connecting morphism in the long exact sequence

⋯ → 𝜋𝑛𝑋(𝑖, 𝑗) → 𝜋𝑛𝑋(𝑖, 𝑘) → 𝜋𝑛𝑋(𝑗, 𝑘) 𝛿−→ 𝜋𝑛−1𝑋(𝑖, 𝑗) → ⋯

for any 𝑖 ≤ 𝑗 ≤ 𝑘.

Theorem 9.19. The pair
(𝐸𝑟

𝑝,𝑞 , 𝑑𝑟)

is a spectral sequence in A.
Moreover, if 𝑋(𝑛) ≃ 0 for 𝑛 ≪ 0, and if we assume that C≤0 is stable under

ℤ-indexed colimits, then the spectral sequence converges:

𝐸𝑟
𝑝,𝑞 ⇒ 𝜋𝑝+𝑞 colim(𝑋 ∶ 𝔑(ℤ) → C)

See [Lur17, Propositions 1.2.2.7 and 1.2.2.14].
There is also a version of Dold–Kan correspondence for stable ∞-categories.

Theorem 9.20. Let C be a stable ∞-category. Then

Fun(𝔑ℤ≥0,C) ≃ Fun(𝔑 op,C).

See [Lur17, Theorem 1.2.4.1].

10 Homological algebra

In this section, ourmain goal is to study the category of cochain complexes. Wewill
see how homotopical algebra applies to homological algebra, which will give us a
higher point of view on various constructions and results in homological algebra.

Nerve of a dg category

Definition 10.1. Let 𝑅 be a commutative ring. A dg category over 𝑅 is a category
enriched over the symmetric monoidal category (Ch𝑅, ⊗)

The abbreviation “dg” stands for “differential graded”. Cochain complexes are
also known as dg vector spaces (or dg modules).
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Definition 10.2. Let C be a dg category over 𝑅.

• The underlying category of C is obtained from C by applying the functor

𝑍0 ∶ (Ch𝑅, ⊗) → (Set, ×),

taking the set of 0-cocycles of a cochain complex.
• The homotopy category of C is obtained from C by applying the functor

𝐻0 ∶ (Ch𝑅, ⊗) → (Set, ×),

taking the 0-th cohomology of a cochain complex.

For example, if C = Ch𝑅, which is enriched over itself, as described in (1.12),
then the underlying category of C is just the ordinary category of cochain com-
plexes Ch𝑅, and its homotopy category is the ordinary category hCh𝑅. The 0-
coboundaries are exactly the chain homotopies.

We now wish to define a quasi-category 𝔑dg(C), such that the homotopies in
this quasi-category are the chain homotopies, and the higher homotopies are higher
chain homotopies, etc.

A simple idea is to consider the sequence of adjunctions

sSet CatsSet CatsMod𝑅 Cat(Ch𝑅)≥0 CatCh𝑅 ,
ℭ

⊥
𝔑

free

⊥
forget

DK

≃
DK

𝑖≥0

⊥
𝜏≥0

and one may define

𝔑dg ∶= 𝔑 ∘ forget ∘ DK ∘ 𝜏≥0 ∶ CatCh𝑅 → sSet,

and will see soon that the image lies in QsCat.
This construction does give the correct quasi-category, but there is amore direct

way to construct this quasi-category. Wewill first define𝔑dg in themore direct way,
and then we will prove that the two constructions are equivalent.
Construction 10.3. Let C be a dg category. The quasi-category 𝔑dg(C) is con-
structed as follows. Its 𝑛-simplices are of the form

({𝑋𝑖}𝑖∈[𝑛], {𝑓𝐼 }𝐼⊂[𝑛],|𝐼|≥2),

where
• 𝑋0, … , 𝑋𝑛 are objects of C.
• For 0 ≤ 𝑖0 < ⋯ < 𝑖𝑚+1 ≤ 𝑛,

𝑓𝑖0⋯𝑖𝑚+1 ∈ HomC(𝑋𝑖0 , 𝑋𝑖𝑚+1 )𝑚,

such that

𝑑𝑓𝑖0⋯𝑖𝑚+1 =
𝑚
∑
𝑗=1

(−1)𝑚+1−𝑗(𝑓𝑖0⋯𝑖𝑗 ⋯𝑖𝑚+1
− 𝑓𝑖𝑗 ⋯𝑖𝑚+1 ∘ 𝑓𝑖0⋯𝑖𝑗 ).
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For example,

• A 0-simplex is just an object 𝑋 ∈ C.
• A 1-simplex connecting the objects 𝑋, 𝑌 ∈ C is a morphism

𝑓01 ∈ HomC(𝑋, 𝑌 )0 such that 𝑑𝑓01 = 0.

In other words, 𝑓01 is just a morphism in the underlying category of C.
• A 2-simplex

𝑌

𝑋 𝑍

𝑔𝑓

ℎ

is a chain homotopy

𝛼 ∶= 𝑓012 ∈ HomC(𝑋, 𝑍)1 such that 𝑑𝛼 = 𝑔 ∘ 𝑓 − ℎ.

We leave it to the reader to define the face and degeneracy maps in 𝔑dg(C), and
verify that it is a quasi-category. ◃
Proposition 10.4. Let C be a dg category. Then for any 𝑋, 𝑌 ∈ C, there is an
isomorphism of simplicial sets

Hom⊳
𝔑dg(C)(𝑋, 𝑌 ) ≃ DK(𝜏≥0 HomC(𝑋, 𝑌 )).

Proof. The 0-simplices of both sides are just the morphisms from 𝑋 to 𝑌 in the
underlying category, i.e. the 0-cocycles in HomC(𝑋, 𝑌 ).

For 1-simplices, a 1-simplex of the left hand side is a diagram

𝑋
𝑌 ,

𝑋

𝟙

𝑓

𝛼
𝑔

which can be written as a sum

𝑋
𝑌

𝑋
𝟙

𝑓

0
𝑓

+
𝑋

𝑌 .
𝑋

0
0

𝛼
𝑔−𝑓

The first part is determined by 𝑓 , and the second part by 𝛼. It follows that

Hom⊳
𝔑dg(C)(𝑋, 𝑌 )1 ≃ 𝑍0(HomC(𝑋, 𝑌 )) ⊕ HomC(𝑋, 𝑌 )1

≃ DK(𝜏≥0 HomC(𝑋, 𝑌 ))1.

For higher simplices, a similar argument will do. We leave the details to the
reader. ◻
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Corollary 10.5. Let C be a dg category. Then there is a categorical equivalence

𝔑dg(C) ≃ 𝔑 ∘ forget ∘ DK ∘ 𝜏≥0(C). ◻

In particular, the functor 𝔑dg is a right adjoint. In fact, it is right Quillen with
respect to a model structure on dg categories.

Theorem 10.6. The category CatCh𝑅 has the Tabuada model structure, with

• A weak equivalence is a functor inducing an equivalence of homotopy cate-
gories, and inducing quasi-isomorphisms on all mapping spaces.

• A fibration is a functor inducing an isofibration of homotopy categories, and
inducing (degreewise) surjections on all mapping spaces.

The functor
𝔑dg ∶ CatCh𝑅 → sSet

is a right Quillen functor with respect to this model structure, and the Joyal model
structure on sSet.

The∞‐category of cochain complexes
Definition 10.7. Let A be an abelian category. The category

𝔑dg(Ch(A))

is called the∞-category of cochain complexes in A, where Ch(A) is seen as a dg
category over ℤ.

In this section, we take a closer look at this particular ∞-category, and in par-
ticular, the pushouts and pullbacks in this category. We will show that it is a stable
∞-category.

Proposition 10.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism in the category sAb of simplicial
abelian groups. Then 𝑓 is a fibration of simplicial sets, if and only if the map

DK(𝑓 )∶ DK(𝑋) → DK(𝑌 )

is a degreewise surjection of chain complexes.

Proof. Let 0 ≤ 𝑖 ≤ 𝑛. Then there is a splitting

DK(ℤΔ[𝑛]) ≃ DK(ℤΛ𝑖[𝑛]) ⊕ 𝐷𝑛,

where
𝐷𝑛 ∶= (⋯ → 0 → ℤ

1−→ ℤ → 0 → ⋯),
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with the nonzero terms in (homological indexing) the positions 𝑛 and 𝑛 − 1. The
following lifting properties are equivalent:

Λ𝑖[𝑛] 𝑋

Δ[𝑛] 𝑌

⟺
DK(Λ𝑖[𝑛]) DK(𝑋)

DK(Δ[𝑛]) DK(𝑌 )

⟺
0 DK(𝑋)

𝐷𝑛 DK(𝑌 ) .

Since a map from 𝐷𝑛 to any chain complex 𝐶 is equivalent to an element of 𝐶𝑛, the
lifting property in the last diagram above is equivalent to themap DK(𝑋) → DK(𝑌 )
being degreewise surjective. ◻

Corollary 10.9. Every simplicial abelian group is a Kan complex. ◻
Corollary 10.10. Let

𝑋 𝑋′

𝑌 𝑌 ′

𝑓

⌟

be an ordinary pushout diagram in Ch(A). If 𝑓 is a degreewise split injection, then
this diagram is a homotopy pushout diagram, i.e. a pushout diagram in𝔑dg(Ch(A)).
Proof. We regard Ch(A) as a simplicial category via the functor DK ∘ 𝜏≥0. Then it
is enriched over Kan complexes by (10.9). By (7.12), we have to show that for any
𝑍 ∈ Ch(A), the diagram

HomCh(A)(𝑌 ′, 𝑍) HomCh(A)(𝑌 , 𝑍)

HomCh(A)(𝑋′, 𝑍) HomCh(A)(𝑋, 𝑍)

⌜

𝑓 ∗

is a homotopy pullback diagram of Kan complexes. It is known that for simplicial
sets, any pullback along a fibration is a homotopy pullback. Thus it suffices to
show that 𝑓 ∗ is a fibration. By (10.8), it suffices to show that 𝑓 ∗ as a map of chain
complexes (i.e. before applying the Dold–Kan functor) is surjective. This is true
since 𝑓 is a split injection. ◻

This corollary enables us to construct homotopy cofibres of cochain complexes
in an explicit way.

For 𝑋 ∈ Ch(A), let 𝑋 ⊗ 𝐷1 denote the object of Ch(A) defined by

(𝑋 ⊗ 𝐷1)𝑛 ∶= 𝑋𝑛+1 ⊕ 𝑋𝑛 and 𝑑𝑛 ∶= (
−𝑑𝑛+1 0

1 𝑑𝑛) .

This is called the cone over 𝑋, and is always quasi-isomorphic to 0, i.e. exact. In
fact, if A = Mod𝑅 for a commutative ring 𝑅, then 𝑋 ⊗ 𝐷1 is the tensor product of
𝑋 and the cochain complex

𝐷1 ∶= (⋯ → 0 → 𝑅 1−→ 𝑅 → 0 → ⋯).
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Definition 10.11. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism in Ch(A). Themapping cone of
𝑓 is a cochain complex cone(𝑓 ), defined by the ordinary pushout

𝑋 𝑋 ⊗ 𝐷1

𝑌 cone(𝑓 ) .
𝑓 ⌟

Explicitly, one has

cone(𝑓 )𝑛 ≃ 𝑋𝑛+1 ⊕ 𝑌 𝑛 and 𝑑𝑛 ∶= (
−𝑑𝑛+1

𝑋 0
𝑓 𝑛+1 𝑑𝑛

𝑌 ) .

This important construction in homological algebra can now be seen as a spe-
cial case of an ∞-categorical construction, i.e., the homotopy cofibre.

Theorem 10.12. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism in Ch(A). Then the mapping cone
of 𝑓 is the homotopy cofibre of 𝑓 :

𝑋 0

𝑌 cone(𝑓 ) .
𝑓 ⌟

In particular, the suspension of 𝑋 is homotopy equivalent to the shifted complex
𝑋[1]. In other words, one has the homotopy pushout diagram

𝑋 0

0 𝑋[1] .
𝑓 ⌟

Proof. This follows immediately from (10.10). ◻

Corollary 10.13. The category 𝔑dg(Ch(A)) is stable.

Proof. We have seen that the suspension functor Σ ≃ [1] is invertible. By (8.5), it
suffices to show the existence of homotopy pushouts. Note that any map 𝑓 ∶ 𝑋 →
𝑌 is equivalent to a degreewise split injection 𝑋 ↪ Cyl(𝑓 ), where Cyl(𝑓 ) is the
mapping cylinder as in homological algebra. ◻
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