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Overview

Enumerative geometry is the study of moduli spaces:

moduli space

𝑀 ⟹
extract enumerative invariants

(numbers, spaces,
categories, …)

These include

⦁ intersection pairings on H•(𝑀);

⦁ the Euler characteristic 𝜒(𝑀) = ∑𝑖 (−1)𝑖 dim H𝑖(𝑀);

⦁ the cohomology H•(𝑀) (vector space, Hodge structure, etc.);

⦁ the category Coh(𝑀); …
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Overview

Obstacles

⦁ 𝑀 can be non-compact.

– Construct a compactification; problem-specific.

⦁ 𝑀 can be singular.

– Use virtual (i.e. derived) geometry instead of classical geometry.

⦁ Points in 𝑀 have automorphisms ⟹ 𝑀 is an (Artin) stack.

– Need stack theory: Techniques only available in linear case.

– This talk: The general case.

– (Problem does not appear in Gromov–Witten theory.)
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Overview

Obstacles

For example, consider the stack 𝑀 = ∗/ℂ× (≈ ℂℙ∞).

⦁ Its Euler characteristic is 𝜒(𝑀) = 1/0 = ∞.

⦁ Its cohomology H•(𝑀) ≃ ℚ[𝑥] is ∞-dimensional.

⦁ It is difficult to make sense of intersection pairings on stacks.

Not easy to extract finite invariants in any of these flavours.

But some techniques are available when 𝑀 parametrize objects in a 

linear category.
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Overview

The linear case

⦁ 𝑀 = moduli of coherent sheaves on a variety 𝑋:

– dim 𝑋 = 1:

– intersection pairings: Jeffrey–Kiem–Kirwan–Woolf 2006, B 2023, B–Kiem 2025

– cohomology: Mozgovoy–Reineke 2015

– dim 𝑋 = 2: Donaldson invariants; Vafa–Witten invariants

– 𝑋: Calabi–Yau 3-fold: Donaldson–Thomas invariants

– 𝑋: Calabi–Yau 4-fold: DT4 invariants (not yet well-developed)

⦁ 𝑀 = moduli of representations of a quiver 𝑄:

– Donaldson–Thomas invariants
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Overview

Goal

⦁ Interpret these invariants as intrinsic to the moduli stack, 

without reference to a linear category.

⦁ Generalize these invariants to general stacks, such as

– Moduli of 𝐺-bundles or 𝐺-Higgs bundles, for any reductive group 𝐺.

– GIT quotient stacks 𝑋/𝐺.

– …

⦁ Motivations from physics; Langlands duality; non-abelian Hodge 

theory; geometric representation theory; …
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Overview

Idea

The key tool is the component lattice of a stack.

⦁ It generalizes root data and Weyl groups in representation 

theory.

⦁ It describes the combinatorial structure of parabolic induction.

⦁ It encodes the axiomatics of Hall algebras in linear moduli 

problems, and generalizes them to arbitrary stacks.
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Groups

Set-up

⦁ 𝐺: reductive group over ℂ, with Lie algebra 𝔤.

Think: 𝐺 = GL𝑛 (ℂ).

⦁ 𝑇 ≃ (ℂ×)𝑛 ⊂ 𝐺: maximal torus.

Think: diagonal matrices in GL𝑛 (ℂ).

⦁ Λ𝑇 = Hom(𝑇, ℂ×) ≃ ℤ𝑛 : the character lattice.

– There are roots Φ ⊂ Λ𝑇 , weights of 𝑇 acting on 𝔤.

⦁ Λ𝑇 = Hom(ℂ×, 𝑇) ≃ ℤ𝑛 : the cocharacter lattice.

– Roots define hyperplanes in Λ𝑇 , giving a hyperplane arrangement.

⦁ 𝑊 : Weyl group, acts on Λ𝑇  and Λ𝑇  via reflections along roots.
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Groups

Example

𝐺 = SL3. We have dim Λ𝑇 = dim Λ𝑇 = 2. There are 6 roots.

1

23

Roots

Hyperplanes

Dominant chamber

𝑊 ≃ S3
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Groups

Definition (B–Halpern-Leistner–Ibáñez Núñez–Kinjo, 2025 preprint)

The component lattice of the stack ∗/𝐺 is

CL(∗/𝐺) ≔ Λ𝑇 /𝑊 ,

the cocharacter lattice divided by the Weyl group.

Remarks

⦁ As a set, it agrees with the dominant chamber Λ+
𝑇 .

⦁ It carries extra structure of a formal lattice over ℤ. This is like 

taking a ‘quotient stack’ Λ𝑇 /𝑊 .
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Groups

Facts

⦁ Cocharacters of 𝐺 are given by

{𝜆 : ℂ× → 𝐺}
conjugation

≃ Λ𝑇 /𝑊 .

⦁ Representations of 𝐺 split into irreducible representations, and

{ irreducible
 representations } ≃ Λ𝑇 /𝑊 .

Dominant weight 𝜒 ∈ Λ𝑇  ⟷ highest weight representation 𝑉𝜒 .
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Groups

Facts

⦁ The cohomology of the classifying space of 𝐺 is

H•(∗/𝐺; ℚ) ≃ ℚ[𝑥1, … , 𝑥𝑡 ]
𝑊 ≃ { polynomial functions 

Λ𝑇 /𝑊 → ℚ },

where 𝑥1, … , 𝑥𝑡  is a set of coordinates on Λ𝑇 .
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Stacks

Stacks

⦁ A stack is roughly the same as a Lie groupoid, that is a groupoid 

whose objects and morphisms form manifolds or schemes.

𝐺x

x

𝐺y

y

𝐺z

z

⦁ Many categories in algebraic geometry, such as Coh(𝑋) or 

Rep(𝑄), can be upgraded to stacks, called moduli stacks.
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Stacks

Stacks

⦁ Cohomology of stacks generalize equivariant cohomology of 

schemes:

H•(𝑋/𝐺; ℚ) ≃ H•
𝐺 (𝑋; ℚ) ,

where 𝑋 is a scheme, and 𝑋/𝐺 is the quotient stack.

⦁ Coherent sheaves on stacks generalize representations of 

algebraic groups:

Coh(∗/𝐺) ≃ Rep(𝐺) .
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Stacks

The component lattice

⦁ The component lattice CL(𝑿) of a stack 𝑿  is similar to the lattice 

Λ𝑇 /𝑊  for a group.

⦁ For each point 𝑥 ∈ 𝑿 , consider its automorphism group 𝐺𝑥  and 

its lattice Λ𝑇 /𝑊 , then glue them together.

𝐺𝑥

𝐺𝑦

𝐺𝑧
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Stacks

Definition (B–Halpern-Leistner–Ibáñez Núñez–Kinjo, 2025 preprint)

For a stack 𝑿  over ℂ, define its component lattice

CL(𝑿) = π0( Map(∗/ℂ×,  𝑿) ) ,

where

⦁ π0 means taking the set of connected components.

⦁ Map(−, −) is the mapping stack.
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Stacks

CL(𝑿) = π0( Map(∗/ℂ×,  𝑿) )

Remarks

⦁ CL(𝑿) is the set of equivalence classes of cocharacters in 𝑿 :

{ maps
 ∗/ℂ× → 𝑿 } ≃ {(𝑥 , 𝜆) | 𝑥 ∈ 𝑿 ,

 𝜆 : ℂ× → 𝐺𝑥  } ,

where 𝐺𝑥  is the automorphism group of 𝑥 .

⦁ Map(∗/ℂ×, 𝑿) = Grad(𝑿) is the stack of graded points of 𝑿 :

– If 𝑿  parametrizes objects in an abelian category 𝒜︀, then Grad(𝑿) 
parametrizes ℤ-graded objects in 𝒜︀.
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Stacks

Combinatorial structure

The component lattice CL(𝑿) has the structure of a formal lattice.

⦁ A formal lattice is any functor

𝐿: { finite rank free ℤ-modules }op ⟶ { sets } .

⦁ For example, all lattices ℤ𝑛  are formal lattices.

⦁ All limits and colimits of ℤ𝑛  are formal lattices. For example,

ℤ𝑛 ⊔ ℤ𝑚  , ℤ𝑛 ∪{0} ℤ𝑚  , ℤ𝑛/𝐺

are formal lattices, where a group 𝐺 acts on ℤ𝑛  linearly.
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Stacks

Combinatorial structure

Moreover, CL(𝑿) carries a natural wall-and-chamber structure:

⦁ Automorphism groups 𝐺𝑥  act on the tangent complex 𝕋𝑿 |𝑥 .

⦁ The weights of this action define dual hyperplanes on CL(𝑿).

⦁ This is the key combinatorial data for enumerative geometry.
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Applications

Cohomological DT theory

For a symmetric quiver 𝑄, and the moduli stack 𝑿  of Rep(𝑄) over ℂ, 

Kontsevich–Soibelman (2011) conjectured that

H•(𝑿 ; ℚ) ≃ Sym( ⨁
𝑑: dim vector

BPS𝑑 ⊗ ℚ[𝑡] ) ,

i.e., the cohomological Hall algebra (CoHA) is freely generated by 

certain vector spaces BPS𝑑 , which categorify DT invariants.

⦁ Efimov (2012) proved their conjecture.

⦁ Meinhardt–Reineke (2019) related BPS𝑑  to intersection cohomology.

⦁ Davison–Meinhardt (2020) generalized it to quivers with potentials.
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Applications

Theorem (B–Davison–Ibáñez Núñez–Kinjo–Pădurariu, 2025 preprint;

Hennecart–Kinjo, 2025 preprint)

For a smooth symmetric stack 𝑿  over ℂ with a good moduli space 𝑋 

(and other mild assumptions), we have

H•(𝑿 ; ℚ) ≃ ⨁
𝛼: Λ→CL(𝑿)

(BPS𝛼 ⊗ ℚ[𝑡1, … , 𝑡dim Λ])Aut(𝛼) ,

where

⦁ 𝛼 runs through walls in CL(𝑿).

⦁ BPS𝛼 ≃ IH•(𝑋𝛼 ) is the (finite-dimensional) intersection 

cohomology of the good moduli space of a stack 𝑿𝛼

(when the stable locus is non-empty, or zero otherwise).
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Applications

H•(𝑿 ; ℚ) ≃ ⨁
𝛼: Λ→CL(𝑿)

(BPS𝛼 ⊗ ℚ[𝑡1, … , 𝑡dim Λ])Aut(𝛼)

Similar statements hold for Borel–Moore homology for symplectic 

stacks and critical cohomology for (−1)-shifted symplectic stacks.

Remarks

⦁ 𝑿𝛼  is roughly a torus fixed locus in 𝑿 .

⦁ Aut(𝛼) plays a similar role to Weyl groups.

⦁ This recovers known statements in the quiver case.
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Applications

Categorical DT theory

For a reductive group 𝐺, recall the orthogonal decomposition

Rep(𝐺) = ⨁
𝜒∈Λ𝑇/𝑊

⟨ 𝑉𝜒  ⟩ ,

where

⦁ 𝑉𝜒  is the irreducible representation with higher weight 𝜒.

⦁ ⟨𝑉𝜒 ⟩ ⊂ Rep(𝐺) is the abelian subcategory generated by 𝑉𝜒 .
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Applications

Theorem (B–Pădurariu–Toda, in progress)

For a smooth symmetric stack 𝑿  over ℂ with a good moduli space 𝑋 

(and other mild assumptions), we have a semiorthogonal decomposition

DbCoh(𝑿) ≃ ⟨ W𝜆 | 𝜆 ∈ CL(𝑿) ⊗ ℚ ⟩ ,

where

⦁ W𝜆 ⊂ DbCoh(𝑿𝜆 ) is a window subcategory.

⦁ A quadratic form on CL(𝑿) is needed to convert 𝜆 to a 

character.

We expect similar decompositions for DT categories of symplectic 

and (−1)-shifted symplectic stacks.
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Applications

Geometric representation theory

For a reductive group 𝐺, Lusztig’s generalized Springer theory gives 

an orthogonal decomposition

Perv(𝒩︀/𝐺) ≃ ⨁
(𝐿, 𝐶)

Rep(𝑊𝐺, 𝐿) ,

where

⦁ 𝒩︀ ⊂ 𝔤 is the nilpotent cone.

⦁ 𝐿 ⊂ 𝐺 is a Levi subgroup, and 𝐶 is a cuspidal local system on a 

nilpotent orbit of 𝐿.

⦁ 𝑊𝐺, 𝐿 is the relative Weyl group.
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Applications

Mackey formula (B–Hennecart, in progress)

For a smooth stack 𝑿  over ℂ with a good moduli space, 𝜆, 𝜇 ∈ CL(𝑿), 
we have roughly

Res𝜇 ∘ Ind𝜆 ∼ ⨁
𝑤

Ind𝑿𝜇 , 𝜆 ∘ Res𝑿𝜆, 𝑤𝜇 :  Db
con(𝑿𝜆 ) ⟶ Db

con(𝑿𝜇 ) ,

where

⦁ ∼ means roughly that l.h.s. has a filtration by the r.h.s.

⦁ For Springer theory, take 𝑿 = 𝔤/𝐺, so 𝑿𝜆 = 𝔩𝜆/𝐿𝜆  (Levi subgroup).

This may give decompositions for perverse sheaves on general 

stacks.
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Thank you!
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