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Overview

Enumerative geometry is the study of moduli spaces:

moduli space  extract enumerative invariants

M — (numbers, spaces,
categories, ...)

These include
* intersection pairings on H*(M);
e the Euler characteristic x(M) =3 (—1)' dim H'(M);
* the cohomology H*(M) (vector space, Hodge structure, etc.);

* the category Coh(M); ...
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Overview

Obstacles
* M can be non-compact.

— Construct a compactification; problem-specific.

* M can be singular.

— Use virtual (i.e. derived) geometry instead of classical geometry.

* Points in M have automorphisms = M is an (Artin) stack.

— Need stack theory: Techniques only available in linear case.

— This talk: The general case.
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Overview

Obstacles

For example, consider the stack M = x/C*

* |ts Euler characteristic is x(M) = 1/0 = oo.

* |ts cohomology H* (M) ~ Q[x] is co-dimensional.

* ltis difficult to make sense of intersection pairings on stacks.
Not easy to extract finite invariants in any of these flavours.

But some techniques are available when M parametrize objects in a
linear category.
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Overview

The linear case
* M = moduli of coherent sheaves on a variety X:

— dimX =1:
— intersection pairings: Jeffrey—Kiem-Kirwan-Woolt 2006, B 2023, B-Kiem 2025
— cohomology: Mozgovoy—Reineke 2015

— dim X = 2: Donaldson invariants; Vafa—Witten invariants
— X: Calabi-Yau 3-fold: Donaldson-Thomas invariants

— X: Calabi—Yau 4-fold: DT4 invariants (not yet well-developed)
* M = moduli of representations of a quiver Q:

— Donaldson-Thomas invariants
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Overview

Goal

* Interpret these invariants as intrinsic to the moduli stack,
without reference to a linear category.

* Generalize these invariants to general stacks, such as

— Moduli of G-bundles or G-Higgs bundles, for any reductive group G.

— GIT quotient stacks X/G.

* Motivations from physics; Langlands duality; non-abelian Hodge
theory; geometric representation theory; ...
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Overview

Idea

The key tool is the component lattice of a stack.

* |t generalizes root data and Weyl groups in representation
theory.

* It describes the combinatorial structure of parabolic induction.

* It encodes the axiomatics of Hall algebras in linear moduli
problems, and generalizes them to arbitrary stacks.
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Groups

Set-up

* G:reductive group over C, with Lie algebra g.
Think: G = GL,(C).

o T~ (C*)" c G: maximal torus.
Think: diagonal matrices in GL,(C).

e AT = Hom(T,C*) =~ Z": the character lattice.

— There are roots ® c AT, weights of T acting on g.

* A; = Hom(C*,T) ~ Z": the cocharacter lattice.

— Roots define hyperplanes in Ay, giving a hyperplane arrangement.

* W: Weyl group, acts on A; and AT via reflections along roots.
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Groups

Example

G = SL;. We have dim A" = dim A; = 2. There are 6 roots.

° Roots

— Hyperplanes
Dominant chamber

W ~ S,
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Groups

Definition (B-Halpern-Leistner-lbafiez Nufiez—Kinjo, 2025 preprint)
The component lattice of the stack x/G is

CL(+/G) = A /W,

the cocharacter lattice divided by the Weyl group.

Remarks

* As a set, it agrees with the dominant chamber Af.

* |t carries extra structure of a formal lattice over Z. This is like
taking a ‘quotient stack’ Ay /W.
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Groups

Facts

* Cocharacters of G are given by

{A: C* - G}
conjugation

~ Ny /W.

* Representations of G split into irreducible representations, and

[ irreducible

~ AT
representations } =N/W.

Dominant weight x € AT «— highest weight representation V..
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Groups

Facts

* The cohomology of the classifying space of G is

. LY w _ | polynomial functions
H (*/G/ @) — @[Xw ”‘IXt] — [ /\T/W — @ ]/

where X4, ..., X; is a set of coordinates on A;.
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Stacks

Stacks

* A stack is roughly the same as a Lie groupoid, that is a groupoid
whose objects and morphisms form manifolds or schemes.

X .Z
J ()

s () o
G

Y

* Many categories in algebraic geometry, such as Coh(X) or
Rep(Q), can be upgraded to stacks, called moduli stacks.
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Stacks

Stacks

* Cohomology of stacks generalize equivariant cohomology of
schemes:

H*(X/G; Q) = Hg(X; Q) ,
where X is a scheme, and X/G is the quotient stack.

* Coherent sheaves on stacks generalize representations of
algebraic groups:

Coh(x/G) ~ Rep(G) .
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Stacks

The component lattice

* The component lattice CL(X) of a stack X is similar to the lattice
A; /W for a group.

* For each point x € X, consider its automorphism group G, and
its lattice A; /W, then glue them together.
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Stacks

Definition (B-Halpern-Leistner-lbafiez Nufiez—Kinjo, 2025 preprint)
For a stack X over C, define its component lattice
CL(X) = nO( Map(*/C*, X) ) ,
where
* 11, means taking the set of connected components.

* Map(—, —) is the mapping stack.
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Stacks

CL(X) = 1to( Map(+/C*, X) )

Remarks

* CL(X) is the set of equivalence classes of cocharacters in X:

maps -~ xeX,
[*/(]:X _)X]_[(X,A) ‘ A: Cx _)GX]/
where G, is the automorphism group of x.

e Map(x/C*, X) = Grad(X) is the stack of graded points of X:

— If X parametrizes objects in an abelian category A, then Grad(X)
parametrizes Z-graded objects in A.
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Stacks

Combinatorial structure

The component lattice CL(X) has the structure of a formal lattice.

* A formal lattice is any functor

L: { finite rank free Z-modules }°P — { sets }.

e For example, all lattices Z" are formal lattices.

e All limits and colimits of Z" are formal lattices. For example,
7"uz™, 7" Uiy AL 7" /G

are formal lattices, where a group G acts on Z" linearly.
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Stacks

Combinatorial structure

Moreover, CL(X) carries a natural wall-and-chamber structure:
* Automorphism groups G, act on the tangent complex Ty],.

* The weights of this action define dual hyperplanes on CL(X).

* This is the key combinatorial data for enumerative geometry.
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Applications

Cohomological DT theory

For a symmetric quiver Q, and the moduli stack X of Rep(Q) over C,
Kontsevich-Soibelman conjectured that

) =sym( @ 8PS, @0,

d: dim vector

l.e., the cohomological Hall algebra (CoHA) is freely generated by
certain vector spaces BPS,, which categorify DT invariants.

* Efimov proved their conjecture.
* Meinhardt-Reineke related BPS, to intersection cohomology.
* Davison—-Meinhardt generalized it to quivers with potentials.
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Applications

Theorem (B-Davison-Ibafiez Nufiez—Kinjo—Padurariu, 2025 preprint;
Hennecart—Kinjo, 2025 preprint)

For a smooth symmetric stack X over C with a good moduli space X
(and other mild assumptions), we have

H'(X; @)~ € (BPS, ®Qlty, ..., tgimal ),
a: \—CL(X)

where
* a runs through walls in CL(X).

* BPS, ~ IH*(X,) is the (finite-dimensional) intersection
cohomology of the good moduli space of a stack X,

(when the stable locus is non-empty, or zero otherwise).
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Applications

H' X Q= D (BPS, ® Qlty, .., tymal )
a: \—-CL(X)

Similar statements hold for Borel-Moore homology for symplectic

stacks and critical cohomology for (—1)-shifted symplectic stacks.

Remarks

* X, is roughly a torus fixed locus in X.
* Aut(a) plays a similar role to Weyl groups.

* This recovers known statements in the quiver case.

Chenjing Bu MRIR Stacks and combinatorics in enumerative geometry

21 /25



Applications

Categorical DT theory

For a reductive group G, recall the orthogonal decomposition

where
° V, is the irreducible representation with higher weight ¥.

* (V,) C Rep(G) is the abelian subcategory generated by V,.
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Applications

Theorem (B-P&durariu-Toda, in progress)

For a smooth symmetric stack X over C with a good moduli space X
, we have a semiorthogonal decomposition

D°Coh(X) ~ (W, | AeCLIX)®Q),
where
* W, C DbCoh(XA) is a window subcategory.

* A quadratic form on CL(X) is needed to convert A to a
character.

We expect similar decompositions for DT categories of symplectic
and (—1)-shifted symplectic stacks.
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Applications

Geometric representation theory

For a reductive group G, Lusztig’'s generalized Springer theory gives
an orthogonal decomposition

Perv(N/G) =~ @ Rep(Wg )
where

* N C gis the nilpotent cone.

* L c Gisalevisubgroup, and C is a cuspidal local system on a
nilpotent orbit of L.

* W | is the relative Weyl group.
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Applications

Mackey formula (B-Hennecart, in progress)

For a smooth stack X over C with a good moduli space, A, u € CL(X),
we have roughly

Res, o Ind, ~ @ |”dxu,)\ °Resy wu: D(?on(x)\) - Dgon(xll) 4
w

where
* ~ means roughly that L.h.s. has a filtration by the r.h.s.

* For Springer theory, take X = g/G, so X, =1, /L,
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Thank youl!
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