

Stacks and combinatorics in enumerative geometry

Chenjing Bu 卜辰璟

University of Oxford

ICCM, Shanghai

6 January 2026

Contents

1 Overview

2 Groups

3 Stacks

4 Applications

Overview

Enumerative geometry is the study of moduli spaces:

These include

- intersection pairings on $H^\bullet(M)$;
- the Euler characteristic $\chi(M) = \sum_i (-1)^i \dim H^i(M)$;
- the cohomology $H^\bullet(M)$ (vector space, Hodge structure, etc.);
- the category $\text{Coh}(M)$; ...

Overview

Obstacles

- M can be **non-compact**.
 - Construct a compactification; problem-specific.
- M can be **singular**.
 - Use **virtual** (i.e. **derived**) geometry instead of classical geometry.
- Points in M have **automorphisms** $\implies M$ is an (Artin) **stack**.
 - Need stack theory: Techniques only available in **linear** case.
 - **This talk:** The **general** case.
 - (Problem does not appear in Gromov–Witten theory.)

Overview

Obstacles

For example, consider the stack $M = */\mathbb{C}^\times$ ($\approx \mathbb{CP}^\infty$).

- Its Euler characteristic is $\chi(M) = 1/0 = \infty$.
- Its cohomology $H^\bullet(M) \simeq \mathbb{Q}[x]$ is ∞ -dimensional.
- It is difficult to make sense of intersection pairings on stacks.

Not easy to extract finite invariants in any of these flavours.

But some techniques are available when M parametrize objects in a linear category.

Overview

The linear case

- M = moduli of coherent sheaves on a variety X :
 - $\dim X = 1$:
 - intersection pairings: Jeffrey–Kiem–Kirwan–Woolf 2006, B 2023, B–Kiem 2025
 - cohomology: Mozgovoy–Reineke 2015
 - $\dim X = 2$: **Donaldson invariants**; **Vafa–Witten invariants**
 - X : Calabi–Yau 3-fold: **Donaldson–Thomas invariants**
 - X : Calabi–Yau 4-fold: **DT4 invariants** (not yet well-developed)
- M = moduli of representations of a quiver Q :
 - **Donaldson–Thomas invariants**

Overview

Goal

- Interpret these invariants as **intrinsic** to the moduli stack, without reference to a linear category.
- Generalize these invariants to general stacks, such as
 - Moduli of **G-bundles** or **G-Higgs bundles**, for any reductive group G .
 - GIT quotient stacks X/G .
 - ...
- Motivations from **physics**; **Langlands duality**; **non-abelian Hodge theory**; **geometric representation theory**; ...

Overview

Idea

The key tool is the **component lattice** of a stack.

- It generalizes **root data** and **Weyl groups** in representation theory.
- It describes the combinatorial structure of **parabolic induction**.
- It encodes the axiomatics of **Hall algebras** in linear moduli problems, and generalizes them to arbitrary stacks.

Contents

1 Overview

2 Groups

3 Stacks

4 Applications

Groups

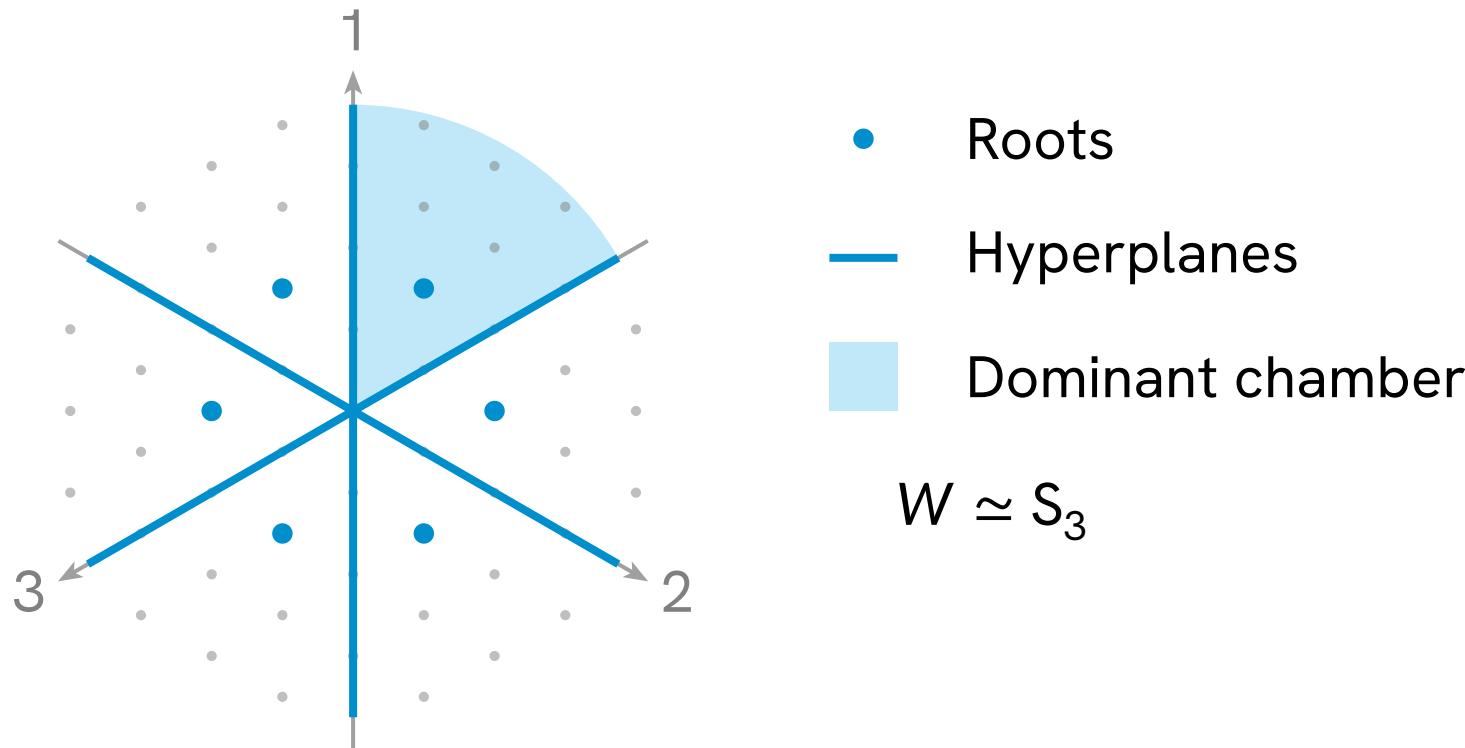
Set-up

- G : **reductive group** over \mathbb{C} , with Lie algebra \mathfrak{g} .
Think: $G = \mathrm{GL}_n(\mathbb{C})$.
- $T \simeq (\mathbb{C}^\times)^n \subset G$: **maximal torus**.
Think: diagonal matrices in $\mathrm{GL}_n(\mathbb{C})$.
- $\Lambda^T = \mathrm{Hom}(T, \mathbb{C}^\times) \simeq \mathbb{Z}^n$: the **character lattice**.
 - There are **roots** $\Phi \subset \Lambda^T$, weights of T acting on \mathfrak{g} .
- $\Lambda_T = \mathrm{Hom}(\mathbb{C}^\times, T) \simeq \mathbb{Z}^n$: the **cocharacter lattice**.
 - Roots define hyperplanes in Λ_T , giving a **hyperplane arrangement**.
- W : **Weyl group**, acts on Λ_T and Λ^T via reflections along roots.

Groups

Example

$G = \mathrm{SL}_3$. We have $\dim \Lambda^T = \dim \Lambda_T = 2$. There are 6 roots.



Groups

Definition (B–Halpern–Leistner–Ibáñez Núñez–Kinjo, 2025 preprint)

The **component lattice** of the stack $*/G$ is

$$\text{CL}(*/G) := \Lambda_T^+ / W,$$

the **cocharacter lattice** divided by the **Weyl group**.

Remarks

- As a set, it agrees with the **dominant chamber** Λ_T^+ .
- It carries extra structure of a **formal lattice** over \mathbb{Z} . This is like taking a ‘quotient stack’ Λ_T^+ / W .

Groups

Facts

- **Cocharacters** of G are given by

$$\frac{\{\lambda: \mathbb{C}^\times \rightarrow G\}}{\text{conjugation}} \simeq \Lambda_T/W.$$

- **Representations** of G split into irreducible representations, and

$$\left\{ \begin{array}{c} \text{irreducible} \\ \text{representations} \end{array} \right\} \simeq \Lambda^T/W.$$

Dominant weight $\chi \in \Lambda^T \longleftrightarrow$ highest weight representation V_χ .

Groups

Facts

- The **cohomology** of the classifying space of G is

$$H^\bullet(*/G; \mathbb{Q}) \simeq \mathbb{Q}[x_1, \dots, x_t]^W \simeq \left\{ \begin{array}{c} \text{polynomial functions} \\ \Lambda_T/W \rightarrow \mathbb{Q} \end{array} \right\},$$

where x_1, \dots, x_t is a set of coordinates on Λ_T .

Contents

1 Overview

2 Groups

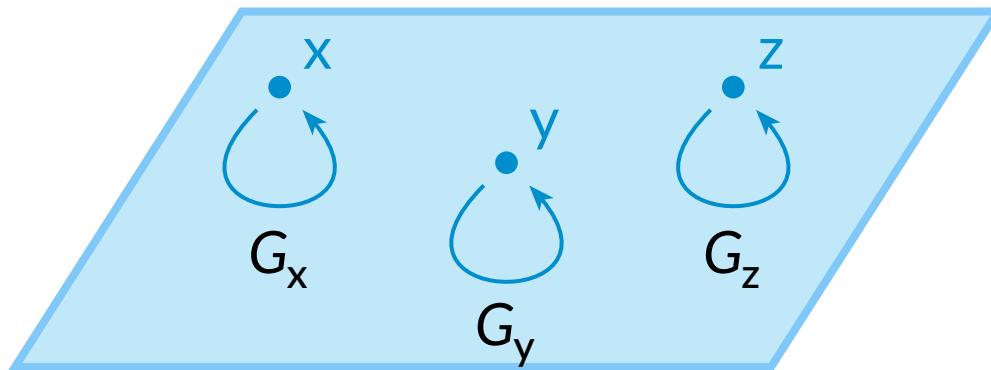
3 Stacks

4 Applications

Stacks

Stacks

- A **stack** is roughly the same as a **Lie groupoid**, that is a groupoid whose objects and morphisms form manifolds or schemes.



- Many categories in algebraic geometry, such as $\text{Coh}(X)$ or $\text{Rep}(Q)$, can be upgraded to stacks, called **moduli stacks**.

Stacks

Stacks

- Cohomology of stacks generalize equivariant cohomology of schemes:

$$H^\bullet(X/G; \mathbb{Q}) \simeq H_G^\bullet(X; \mathbb{Q}) ,$$

where X is a scheme, and X/G is the quotient stack.

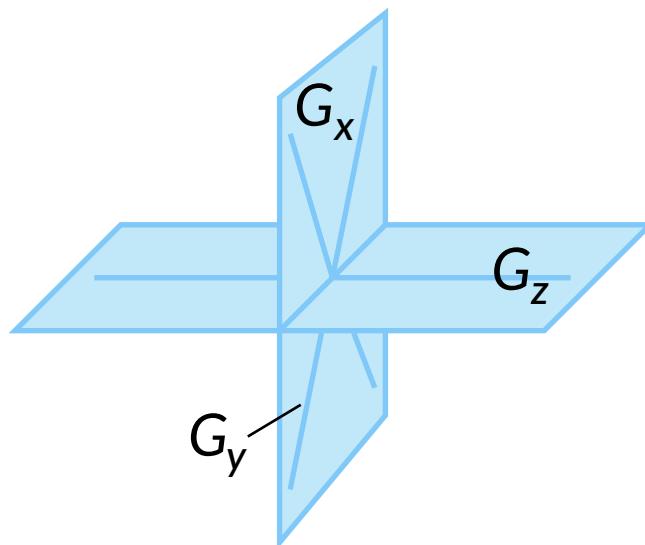
- Coherent sheaves on stacks generalize representations of algebraic groups:

$$Coh(*/G) \simeq Rep(G) .$$

Stacks

The component lattice

- The **component lattice** $CL(X)$ of a stack X is similar to the lattice Λ_T/W for a group.
- For each point $x \in X$, consider its **automorphism group** G_x and its lattice Λ_T/W , then glue them together.



Stacks

Definition (B–Halpern–Leistner–Ibáñez Núñez–Kinjo, 2025 preprint)

For a stack X over \mathbb{C} , define its component lattice

$$CL(X) = \pi_0 \left(\text{Map}(*/\mathbb{C}^\times, X) \right),$$

where

- π_0 means taking the set of connected components.
- $\text{Map}(-, -)$ is the mapping stack.

Stacks

$$\text{CL}(X) = \pi_0 \left(\text{Map}(*/\mathbb{C}^\times, X) \right)$$

Remarks

- $\text{CL}(X)$ is the set of equivalence classes of **cocharacters** in X :

$$\left\{ \begin{array}{c} \text{maps} \\ */\mathbb{C}^\times \rightarrow X \end{array} \right\} \simeq \left\{ (x, \lambda) \mid \begin{array}{l} x \in X, \\ \lambda: \mathbb{C}^\times \rightarrow G_x \end{array} \right\},$$

where G_x is the automorphism group of x .

- $\text{Map}(*/\mathbb{C}^\times, X) = \text{Grad}(X)$ is the **stack of graded points** of X :
 - If X parametrizes objects in an abelian category \mathcal{A} , then $\text{Grad}(X)$ parametrizes \mathbb{Z} -graded objects in \mathcal{A} .

Stacks

Combinatorial structure

The component lattice $CL(X)$ has the structure of a **formal lattice**.

- A **formal lattice** is any functor

$$L: \{ \text{finite rank free } \mathbb{Z}\text{-modules} \}^{\text{op}} \longrightarrow \{ \text{sets} \}.$$

- For example, all **lattices** \mathbb{Z}^n are formal lattices.
- All **limits** and **colimits** of \mathbb{Z}^n are formal lattices. For example,

$$\mathbb{Z}^n \sqcup \mathbb{Z}^m, \quad \mathbb{Z}^n \cup_{\{0\}} \mathbb{Z}^m, \quad \mathbb{Z}^n / G$$

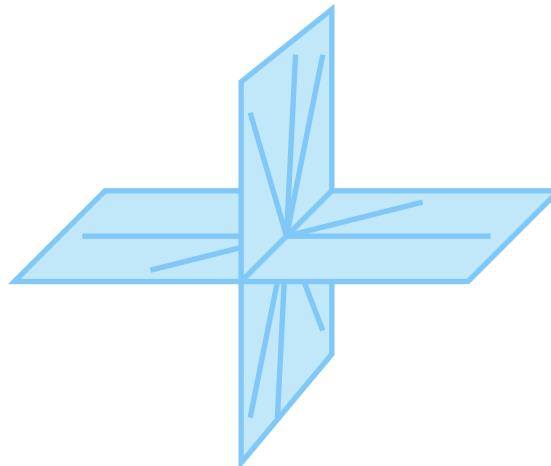
are formal lattices, where a group G acts on \mathbb{Z}^n linearly.

Stacks

Combinatorial structure

Moreover, $CL(X)$ carries a natural **wall-and-chamber structure**:

- Automorphism groups G_x act on the **tangent complex** $\mathbb{T}_x|_x$.
- The **weights** of this action define dual hyperplanes on $CL(X)$.



- This is the key combinatorial data for **enumerative geometry**.

Contents

- 1** Overview
- 2** Groups
- 3** Stacks
- 4** Applications

Applications

Cohomological DT theory

For a [symmetric quiver](#) Q , and the moduli stack X of $\text{Rep}(Q)$ over \mathbb{C} , Kontsevich–Soibelman (2011) conjectured that

$$H^\bullet(X; \mathbb{Q}) \simeq \text{Sym} \left(\bigoplus_{d: \text{ dim vector}} BPS_d \otimes \mathbb{Q}[t] \right),$$

i.e., the [cohomological Hall algebra \(CoHA\)](#) is freely generated by certain vector spaces BPS_d , which categorify [DT invariants](#).

- Efimov (2012) proved their conjecture.
- Meinhardt–Reineke (2019) related BPS_d to [intersection cohomology](#).
- Davison–Meinhardt (2020) generalized it to [quivers with potentials](#).

Applications

Theorem (B–Davison–Ibáñez Núñez–Kinjo–Pădurariu, 2025 preprint;
Hennecart–Kinjo, 2025 preprint)

For a smooth **symmetric stack** X over \mathbb{C} with a **good moduli space** X (and other mild assumptions), we have

$$H^\bullet(X; \mathbb{Q}) \simeq \bigoplus_{\alpha: \Lambda \rightarrow \text{CL}(X)} (BPS_\alpha \otimes \mathbb{Q}[t_1, \dots, t_{\dim \Lambda}])^{\text{Aut}(\alpha)},$$

where

- α runs through **walls** in $\text{CL}(X)$.
- $BPS_\alpha \simeq IH^\bullet(X_\alpha)$ is the (**finite-dimensional**) **intersection cohomology** of the good moduli space of a stack X_α (when the stable locus is non-empty, or zero otherwise).

Applications

$$H^\bullet(X; \mathbb{Q}) \simeq \bigoplus_{\alpha: \Lambda \rightarrow \text{CL}(X)} (BPS_\alpha \otimes \mathbb{Q}[t_1, \dots, t_{\dim \Lambda}])^{\text{Aut}(\alpha)}$$

Similar statements hold for [Borel–Moore homology](#) for symplectic stacks and [critical cohomology](#) for (-1) -shifted symplectic stacks.

Remarks

- X_α is roughly a [torus fixed locus](#) in X .
- $\text{Aut}(\alpha)$ plays a similar role to [Weyl groups](#).
- This recovers known statements in the quiver case.

Applications

Categorical DT theory

For a reductive group G , recall the [orthogonal decomposition](#)

$$\text{Rep}(G) = \bigoplus_{\chi \in \Lambda^T / W} \langle V_\chi \rangle,$$

where

- V_χ is the irreducible representation with higher weight χ .
- $\langle V_\chi \rangle \subset \text{Rep}(G)$ is the abelian subcategory generated by V_χ .

Applications

Theorem (B–Pădurariu–Toda, in progress)

For a smooth symmetric stack X over \mathbb{C} with a good moduli space X (and other mild assumptions), we have a semiorthogonal decomposition

$$D^b\text{Coh}(X) \simeq \langle W_\lambda \mid \lambda \in CL(X) \otimes \mathbb{Q} \rangle,$$

where

- $W_\lambda \subset D^b\text{Coh}(X_\lambda)$ is a window subcategory.
- A quadratic form on $CL(X)$ is needed to convert λ to a character.

We expect similar decompositions for DT categories of symplectic and (-1) -shifted symplectic stacks.

Applications

Geometric representation theory

For a reductive group G , Lusztig's **generalized Springer theory** gives an orthogonal decomposition

$$\mathrm{Perv}(\mathcal{N}/G) \simeq \bigoplus_{(L, C)} \mathrm{Rep}(W_{G,L}) ,$$

where

- $\mathcal{N} \subset \mathfrak{g}$ is the **nilpotent cone**.
- $L \subset G$ is a **Levi subgroup**, and C is a cuspidal local system on a nilpotent orbit of L .
- $W_{G,L}$ is the **relative Weyl group**.

Applications

Mackey formula (B–Hennecart, in progress)

For a smooth stack X over \mathbb{C} with a good moduli space, $\lambda, \mu \in \text{CL}(X)$, we have roughly

$$\text{Res}_\mu \circ \text{Ind}_\lambda \sim \bigoplus_w \text{Ind}_{X_{\mu}, \lambda} \circ \text{Res}_{X_\lambda, w\mu} : D_{\text{con}}^b(X_\lambda) \longrightarrow D_{\text{con}}^b(X_\mu),$$

where

- \sim means roughly that l.h.s. has a **filtration** by the r.h.s.
- For Springer theory, take $X = \mathfrak{g}/G$, so $X_\lambda = \mathfrak{l}_\lambda/L_\lambda$ (Levi subgroup).

This may give decompositions for perverse sheaves on general stacks.

Thank you!