群、叠与组合

卜辰璟

University of Oxford

清华大学

2025年6月28日

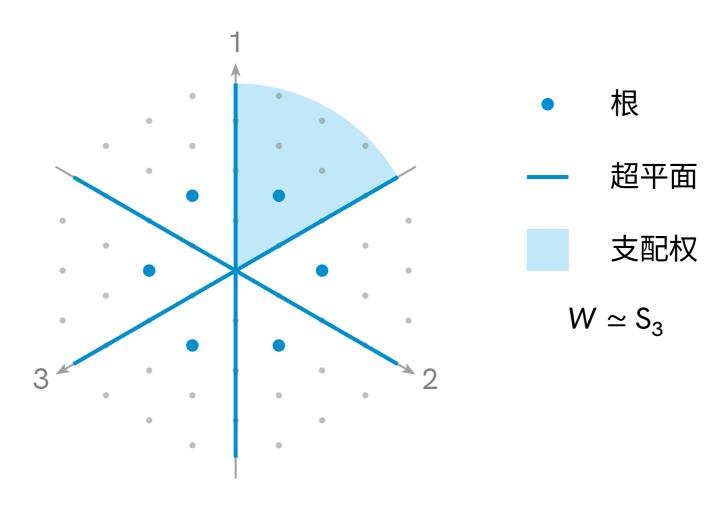
目录

- 1 Lie 群
- 2 叠
- 3 叠的晶格
- 4 应用

记号

- G 是复约化 Lie 群, 例如 GL_n(ℂ). 其 Lie 代数记为 g.
- $T \simeq (\mathbb{C}^{\times})^n \subset G$ 是极大环面, 例如 $GL_n(\mathbb{C})$ 中的对角阵子群.
- $\Lambda^T = \text{Hom}(T, \mathbb{C}^{\times}) \simeq \mathbb{Z}^n$ 是特征晶格.
 - 有一些根 Φ ⊂ Λ^T, 即 T 作用于 g 的权.
- $\Lambda_T = \text{Hom}(\mathbb{C}^{\times}, T) \simeq \mathbb{Z}^n$ 是余特征晶格.
 - 根对应 Λ_{τ} 中的超平面, 形成超平面排布.
- W 是 Weyl 群, 作用于 ∧_T、∧^T 上, 由关于根的反射生成.

• 例如 $G = SL_3$, 此时 $\dim \Lambda^T = \dim \Lambda_T = 2$, 有 6 个根.



事实

• G 的表示皆为不可约表示之直和,且

$${ \ \ }$$
 不可约表示 $\} \simeq \frac{\Lambda^T}{W}$,

每个支配权 $\chi \in \Lambda^T$ 对应于最高权表示 V_{χ} .

• 由陈-Weil 理论, 分类空间 BG 的上同调环是

$$H^{\bullet}(BG;\mathbb{Q}) \simeq \mathbb{Q}[x_1,...,x_t]^W \simeq \left\{$$
多项式函数 $\frac{\Lambda_T}{W} \to \mathbb{Q} \right\},$

其中 $x_1, ..., x_t$ 是 Λ_T 上的一组坐标.

事实

• G 的余特征的集合:

$$\frac{\{\;\lambda\colon\mathbb{C}^\times\to G\;\}}{共轭}\simeq\frac{\Lambda_T}{W}\;.$$

想法

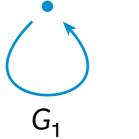
- 对群 G, 我们关心组合信息 ∧_T/W.
- 它是某种广义晶格.

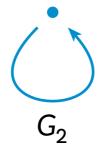
目录

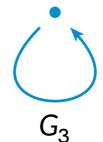
- 1 Lie 群
- 2 叠
- 3 叠的晶格
- 4 应用

群胚

- 回忆, 群胚指所有态射可逆的范畴.
- 群胚就像集合, 但每个元素有一个自同构群:



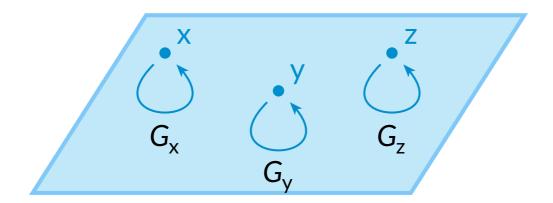




• • •

叠

- 叠可大致定义为 Lie 群胚, 即对象、态射之集均为复流形的群胚.
- 例如, 对 Lie 群 G, 有分类叠 */G, 它只有一个点, 自同构群为 G.
- 叠就像复流形, 但每个元素有一个自同构群.



商叠

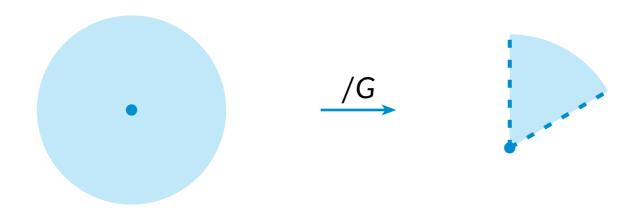
- 若 Lie 群 G 作用于复流形 X, 则有商叠 X/G.
- 其对象集为 X, 态射集为 $G \times X$, 对 $(g,x) \in G \times X$ 有态射

$$a_{g,x}: x \xrightarrow{\sim} g \cdot x$$
.

- 例如, */G 即为前述的分类叠.
- X/G 中对象的同构类对应于 X 中的 G-轨道.
- 点 $x \in X/G$ 的自同构群为稳定子 $Stab_G(x) \subset G$.

例子

让 $G = \mathbb{Z}/n\mathbb{Z}$ 以 $2\pi/n$ 的旋转作用于 \mathbb{C} . 则商叠 \mathbb{C}/G 是圆心角 $2\pi/n$ 的扇形, 原点的自同构群为 $\mathbb{Z}/n\mathbb{Z}$, 其它点的自同构群平凡.



注记

此例中,虽然 \mathbb{C}/G 有一个奇点,但它在叠的意义下仍是光滑的.

为何考虑叠?

- 几何学中, 范畴常常自带几何结构, 此即叠的结构. 例如:
 - (某复流形上) 向量丛的范畴 → 向量丛的模叠.
 - 导出范畴 → 导出叠, 其几何称为导出几何.

模叠通常比相应的模空间具有更好的性质, 例如光滑性等.

- 物理学中, 规范理论由叠 (而非空间) 描述最为自然, 正如向量丛构成范畴 (而非集合).
 - 我们需要导出几何来初步理解现实世界的物理.

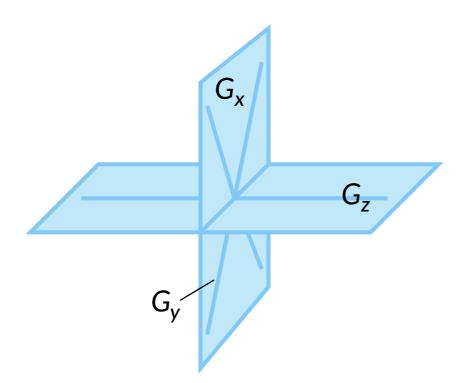
目录

- 1 Lie 群
- 2 叠
- 3 叠的晶格
- 4 应用

叠的晶格

想法

- 对叠 X, 定义其组合晶格 CL(X), 以推广 Lie 群的晶格 Λ_T/W .
- 对每个点 $x \in X$, 考虑其自同构群 G_x 的晶格 Λ_T/W , 再粘起来.



叠的晶格

定义 (B., Halpern-Leistner, Ibáñez Núñez, Kinjo, 2025 预印本)

对复代数叠 X, 定义其组合晶格

$$CL(X) = \pi_0(Map(*/\mathbb{C}^{\times}, X)),$$

其中

- π₀ 指连通分支之集.
- Map(-,-) 指映射叠, 类似映射空间.

例如:

$$CL(*/G) \simeq \frac{\{ \, \text{余特征} \, \mathbb{C}^{\times} \to G \, \}}{\text{共轭}} \simeq \left[\frac{\Lambda_T}{W} \right].$$

叠的晶格

代数结构

组合晶格 CL(X) 总是具有形式晶格的结构.

• 形式晶格是指任何函子

L: {有限生成自由 \mathbb{Z} -模} $\xrightarrow{\text{op}}$ → {集合}.

- 例如,所有晶格 Zⁿ 都是形式晶格.
- 由这些 Zⁿ 出发, 可以取任意极限、余极限. 例如,

$$\mathbb{Z}^n \sqcup \mathbb{Z}^m$$
, $\mathbb{Z}^n \cup_{\{0\}} \mathbb{Z}^m$, \mathbb{Z}^n/G

都是形式晶格的例子, 这里群 G 线性作用于 \mathbb{Z}^n .

目录

- 1 Lie 群
- 2 叠
- 3 叠的晶格
- 4 应用

概述

- 推广已有的计数几何理论, 包括 Donaldson-Thomas 理论:
 - 凝聚层计数 \rightsquigarrow 任何叠 X 上点的计数.
- 研究叠的上同调、叠上各类层范畴的结构 (以下详述).
- 我们希望此体系有助于探究以下问题:
 - 几何 Langlands 纲领之若干版本, 例如三维流形的 Langlands 对偶.
 - 非交换 Hodge 理论中的若干问题, 例如一般约化群的 P = W 猜想.
 - 数论中的 Langlands 纲领中或许也有类似的结构.

叠的上同调

• 回忆, 对复约化 Lie 群 G, 有

$$H^{\bullet}(*/G;\mathbb{Q}) \simeq \mathbb{Q}[x_1,...,x_t]^W$$
,

其中 $x_1, ..., x_t$ 是晶格 Λ_T 上的一组坐标.

• 对更一般的叠 X, 也可用组合晶格 CL(X) 描述上同调 H•(X; Q).

定理 (B., Davison, Ibáñez Núñez, Kinjo, Pădurariu, 2025 预印本)

设 X 为光滑复代数叠, 满足某些条件. 则有分解

$$\mathsf{H}^{\bullet}(X;\mathbb{Q}) = \bigoplus_{\alpha:\mathbb{Z}^{t}\to\mathsf{CL}(X)} \left(\mathsf{IH}^{\bullet}(X_{\alpha};\mathbb{Q})\otimes\mathbb{Q}[x_{1},...,x_{t}]\right)^{\mathsf{Aut}(\alpha)},$$

其中

- 只对有限个 α 求和, X_{α} 大致是 α 对应的环面作用于 X 之固定集.
- IH• 是相交上同调, 是有限维的.

另外, 对辛叠的 Borel-Moore 同调、(-1)-移位辛叠的临界上同调, 也有类似的分解. 此时分解出来的部分称为 BPS 空间.

叠的表示论

• 回忆, 复约化 Lie 群 G 的表示范畴 Rep(G) 有正交分解

$$\operatorname{Rep}(G) = \bigoplus_{\chi \in \Lambda^T/W} \langle V_{\chi} \rangle,$$

其中

- $-V_{\chi}$ 是以 χ 为最高权的表示.
- $-\langle V_{\chi} \rangle$ ⊂ Rep(G) 是 V_{χ} 生成的 Abel 子范畴, 由形如 $V_{\chi}^{\oplus n}$ 的对象构成.
- 而 Rep(G) ~ Coh(*/G), 即叠 */G 上的凝聚层范畴.
- 对一般的叠 X, 将凝聚层范畴 Coh(X) 视为 X 的表示范畴.

定理 (B., Pădurariu, Toda, 进行中)

设 X 为光滑复代数叠, 满足某些条件. 则有半正交分解

$$D^{b}Coh(X) = \langle W_{\lambda} | \lambda \in CL(X) \otimes \mathbb{Q} \rangle$$
,

其中

- $W_{\lambda} \subset D^{b}Coh(X_{\lambda})$ 是某个窗口子范畴.
- 需选择一个二次型以将"余特征"λ视为"特征".

另外, 我们期望对辛叠、(-1)-移位辛叠也有类似的分解.

谢谢!