Counting sheaves on curves

Chenjing Bu University of Oxford

> Geometry and Analysis Seminar 7 November 2022

Contents

[Overview](#page-1-0)

- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

Overview

The setup.

- $X a$ smooth projective curve over $\mathbb C$, i.e. a compact Riemann surface.
- M moduli stack of coherent sheaves on X. (Roughly, moduli space of holomorphic vector bundles.)

In physics.

- M is, roughly, the moduli space of vacua in 2d Yang–Mills theory on X , with gauge group $SU(n)$.
- The partition function of the theory provides rich geometric information about M. (Witten 1992)

Overview

Question.

• Study the geometry of M – homology, intersection pairings, volume, …

⇑

Homological counting invariants of M **– roughly, the** fundamental class " [$\mathcal{M} \mathcal{g}_{\mathsf{fund}}$ ".

Problems.

- M can be non-Hausdorff.
- M can be singular.

Classical approach.

• Use geometric invariant theory to remove non-Hausdorff points. This gives a nice‐behaving semistable locus

 $M^{ss} \subset M$.

without losing much information.

• When r and d are coprime, the connected component

 $\mathcal{M}_{(r,d)}^{\text{ss}} \subset \mathcal{M}^{\text{ss}}$

consisting of rank r, degree d vector bundles is smooth.

Previous work.

• Witten (1992) gave physical predictions of intersection pairings

$$
\int_{\mathcal{M}^{\, \text{ss}}_{(r,d)}} \alpha \cdot \beta
$$

when r and d are coprime, for $\alpha, \beta \in H^*(\mathcal{M}_{(r,d)}^{\mathrm{ss}};\mathbb{Q}).$

• Jeffrey-Kirwan (1998) proved Witten's formulae, using equivariant localization.

New approach.

- Joyce (2021) defined invariants $[\mathcal{M}_{\alpha}^{ss}]_{inv} \in H_*(\mathcal{M};\mathbb{Q})$ in a very general setting, using stable pairs. Here $\alpha = (r, d)$.
- When *r* and *d* are coprime, $[\mathcal{M}_{(r,d)}^{ss}]_{inv} = [\mathcal{M}_{(r,d)}^{ss}]_{fund}$.
- Joyce proved wall-crossing formulae for his invariants, expressed in terms of a vertex algebra structure on $H_*(\mathcal{M};\mathbb{Q}).$
- Using this machinery, I obtained explicit formulae for the classes $[\mathcal{M}_{(r,d)}^{\mathrm{ss}}]_{\textsf{inv}}$, in terms of a regularized sum $-$ a divergent infinite sum.

Overview

Main Theorem.
\n
$$
[\mathcal{M}_{(r,d)}^{ss}]_{inv} = \sum_{\substack{(d_1, \ldots, d_r) \in \text{ some lattice} \ d_1 + \cdots + d_r = d}} (\text{coeff.})
$$
\n
$$
[[\ldots[[\mathcal{M}_{(1,d_1)}^{ss}]_{fund}, [\mathcal{M}_{(1,d_2)}^{ss}]_{fund}], \ldots], [\mathcal{M}_{(1,d_r)}^{ss}]_{fund}].
$$

Remarks.

- $\mathcal{M}_{(1,d_i)}^{ss} \simeq J(X)$, the Jacobian variety of X, which is a torus T^{2g} .
- The Lie brackets come from Joyce's vertex algebra.

Overview

Examples.

- When $g = 2$, the volume vol $(\mathcal{M}_{(2,1)}^{\text{ss,fd}})$ is $1 + 3 + 5 + 7 + \dots = \frac{1}{12}$.
- When $(r, d) = (3, 1)$, we are summing over this lattice:

Remarks.

- When r and d are coprime, my formulae recover classical results on intersection pairings on $\mathcal{M}_{(r,d)}^{\mathrm{ss}}$.
- Witten expressed his formulae as a convergent sum over a lattice, which is related to my lattice by something similar to a Fourier transform.
- When r and d are not coprime, I believe my results produce physically expected numbers. (The case $r = 2$ is in the literature.)

Contents

[Overview](#page-1-0)

[Moduli of sheaves](#page-10-0)

- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

Automorphism groups.

- Moduli stacks care about automorphism groups of objects.
- For $E \in \text{Coh}(X)$, we always get the scalar automorphisms

$$
\mathbb{G}_{m} \simeq \{\lambda \cdot id \mid \lambda \in \mathbb{C}^{\times}\} \subset Aut(E).
$$

• We can remove them to get something closer to the classical moduli space. In other words, we consider

$$
Aut^{pl}(E) = Aut(E)/\mathbb{G}_{m}
$$

```
where p = projective linear.
```
Variants of moduli stacks.

- M moduli stack of coherent sheaves on X.
- $\mathcal{M}^{\text{pl}} = \mathcal{M}/[\ast/\mathbb{G}_{\text{m}}]$, the stack M with scalar automorphisms removed.
- $\mathcal{M}_{(r,d)}^{ss} \subset \mathcal{M}^{\text{pl}}$ consists of semistable coherent sheaves of rank r. degree d.

When $r > 0$, all semistable sheaves are vector bundles.

• $\mathcal{M}_{(r,d)}^{ss,fd} \subset \mathcal{M}_{(r,d)}^{ss}$ consists of sheaves with a fixed (chosen) determinant line bundle (when $r > 0$).

Homology.

• The rational cohomology of M is a free supercommutative polynomial algebra:

$$
H^*(\mathcal{M};\mathbb{Q})\simeq \mathbb{Q}[S_{\alpha;j,k,\ell}],
$$

with $\alpha \in K(X)$ **,** $1 \le j \le b^k(X)$ (the *k*-th Betti number of *X*), and $\ell > k/2$, with deg $S_{\alpha i,k,\ell} = 2\ell - k$.

• By duality, we can define an isomorphism of vector spaces

$$
H_*(\mathcal{M};\mathbb{Q})\simeq \mathbb{Q}[s_{\alpha;j,k,\ell}],
$$

with deg $s_{\alpha;i,k,\ell} = 2\ell - k$.

Vertex algebras.

• Joyce proved that the graded vector space

 $H_*(\mathcal{M};\mathbb{Q})\simeq \mathbb{Q}[s_{\alpha;j,k,\ell}]$

has the structure of a vertex algebra.

• This is very surprising. Vertex algebras are very complicated algebraic structures, arising from 2d conformal field theory in physics. But this structure exists in a very general setting, which seems to have nothing to do with two dimensions.

Moduli of sheaves

• In a vertex algebra \mathcal{V} , elements $a \in \mathcal{V}$ are thought of as fields $q(z)$ on the formal disk, which are meromorphic and operator‐valued:

$$
a \in \mathcal{V} \implies a(z) \in \text{End}(\mathcal{V})[[z, z^{-1}]]
$$

• The product $a(z)$ *b* is often denoted by

$$
Y(a, z) b = \sum_{n} a_n(b) \cdot z^{-n-1} \quad \in \mathcal{V}[[z]][z^{-1}],
$$

where $a_n(b) \in \mathcal{V}$.

• Taking the residue

$$
[a,b] = a_0(b) = \oint_0 a(z) b dz
$$

associates a Lie algebra to every vertex algebra, which is a quotient of the vertex algebra.

• In our setting,

vertex algebra
\n
$$
H_*(M; \mathbb{Q})
$$
\n \Longrightarrow \n \downarrow \nLie algebra
\n $H_*(M^{\text{pl}}; \mathbb{Q})$

Contents

- [Overview](#page-1-0)
- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

Pairs.

Fix, once and for all, a line bundle $L \rightarrow X$. We often take $L = \mathcal{O}(-N)$ for $N \gg 0$.

• A pair is a map

 $\rho: L \otimes V \rightarrow E$,

with V a vector space and $E \in \text{Coh}(X)$.

• We are mostly concerned with the case $V = \mathbb{C}$. Then a pair is just a sheaf E with a section of E \otimes L $^{-1}.$

Moduli of pairs.

- $\bullet \;\; {\rm \tilde{M}}_{(r,d),e}$ moduli stack of pairs, where the sheaf E is of class (r, d) and the vector space V is of dimension e .
- $\mathcal{M}_{(r,d),e}^{\text{pl}} = \mathcal{M}_{(r,d),e}/[\ast/\mathbb{G}_{\text{m}}]$, with scalar automorphisms removed.
- $\mathcal{M}_{(r,d),e}^{ss} \subset \mathcal{M}_{(r,d),e}^{\mathsf{pl}}$ the semistable locus, for a certain stability condition.
- $\mathcal{M}_{(r,d),1}^{ss}$ is well-behaved, since stable = semistable. We have the Behrend–Fantechi virtual fundamental class

$$
[\acute{\mathcal{M}}^{\mathrm{ss}}_{(r,d),1}]_{\mathrm{virt}}\in H_*(\acute{\mathcal{M}}^{\mathrm{pl}};\mathbb{Z}).
$$

Joyce's invariants.

• The forgetful map

$$
\Pi:\; \acute{\mathcal{M}}_{(r,d),1}^{\operatorname{pl}} \longrightarrow \mathcal{M}_{(r,d)}^{\operatorname{pl}}
$$

sending a pair to its underlying sheaf, looks like a projective bundle. So we can define the invariants as a "virtual pushforward"

$$
[\mathcal{M}_{(r,d)}^{ss}]_{inv} = \Pi_! [\mathcal{\hat{M}}_{(r,d),1}^{ss}]_{virt} \in H_*(\mathcal{M}^{pl};\mathbb{Q}).
$$

 \bullet Recall that $H_*(\mathfrak{M}^{\mathsf{pl}};\mathbb{Q})$ has a Lie algebra structure, inherited from the vertex algebra structure on $H_*(\mathcal{M};\mathbb{Q}).$

Wall‐crossing.

There are different interesting stability conditions for pairs on curves. Their invariants are related by wall‐crossing formulae. For example, one of them reads

$$
[\hat{\mathcal{M}}_{(r,d),1}^{ss}]_{virt} = \sum_{\substack{(r,d)=(r_1,d_1)+\cdots+(r_m,d_m),\\m\geq 1, r_i>0, d_i/r_i=d/r \text{ for all } i}} (\text{coeff.}) \cdot
$$

\n
$$
[\cdots[[e^{((0,0),1)}, [\mathcal{M}_{(r_1,d_1)}^{ss}]_{inv}], [\mathcal{M}_{(r_2,d_2)}^{ss}]_{inv}], \dots], [\mathcal{M}_{(r_m,d_m)}^{ss}]_{inv}].
$$

\n
$$
\text{his particular one is an analogue of what is known as } \mathsf{DT} \text{, } \mathsf{DT}
$$

This particular one is an analogue of what is known as $D \Gamma$ –PT wall-crossing.

Contents

- [Overview](#page-1-0)
- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

The regularized sum

Idea.

For any expression a (e.g. $a = 2$), define

$$
\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}.
$$

Example.

$$
\sum_{n=0}^{\infty} \frac{e^{nz}}{z^2} = \frac{1}{z^2(1 - e^z)}
$$

$$
\parallel res_{z=0}
$$

$$
1 + 2 + 3 + 4 + \dots = -\frac{1}{12}.
$$

In general, the regularized sum is defined for geometric series on a lattice, such as this one:

Definition.

The definition is best given visually:

The regularized sum

Important property.

Half‐planes are always zero:

Reason:

$$
\cdots + t^{-2} + t^{-1} + 1 + t + t^2 + \cdots = \frac{t^{-1}}{1 - t^{-1}} + \frac{1}{1 - t} = 0.
$$

This gives us relations such as:

These relations define a quotient space of the vector space spanned by polyhedral cones, where some very interesting combinatorics takes place.

Contents

- [Overview](#page-1-0)
- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

Main result

Main Theorem.

For any $(r, d) \in \mathbb{Z}_{>0} \times \mathbb{Z}$, we have

$$
[\mathcal{M}_{(r,d)}^{ss}]_{inv} = \sum_{\substack{d = d_1 + \dots + d_r \ (d_i \in \mathbb{Z}) \\ \frac{d_1 + \dots + d_i}{i} \leq \frac{d}{r}, \ i = 1, \dots, r-1}} \frac{1}{m+1}.
$$

$$
\Big[\Big[\dots \Big[[\mathcal{M}^{ss}_{(1,d_1)}]_{\text{fund}} \, , \, [\mathcal{M}^{ss}_{(1,d_2)}]_{\text{fund}}\Big], \, \, \dots \Big], \, [\mathcal{M}^{ss}_{(1,d_r)}]_{\text{fund}}\Big],
$$

where m is the number of equalities in the summation condition.

Main result

When $r = 3$, the summation region is shown below, in the plane $d_1 + d_2 + d_3 = d$. The small numbers indicate the coefficients.

Remarks.

• When *and* $*d*$ *are coprime, no integral points lie on the* boundary of the region, so all coefficients are 1.

This case corresponds to classical results of Witten and Jeffrey–Kirwan.

- The fixed determinant invariants $[\mathcal{M}_{(r,d)}^{\mathrm{ss,fd}}]_{\mathrm{inv}}$ can be easily obtained from $[\mathcal{M}_{(r,d)}^{\mathsf{ss}}]_{\mathsf{inv}}$.
- One can write down explicit formulae (very long) for the invariants $[\mathcal{M}_{(r,d)}^{\mathrm{ss}}]_{\text{inv}}$ and $[\mathcal{M}_{(r,d)}^{\mathrm{ss,fd}}]_{\text{inv}}$, in terms of the generators $s_{j,k,\ell} \in H_*(\mathcal{M}^{\mathrm{pl}}; \mathbb{Q}).$

Main result

The formula.

$$
[\mathcal{M}_{(r,d)}^{ss}]_{inv} = res_{z_{r-1}} \circ \cdots \circ res_{z_1} \left\{ \frac{(-1)^{(g-1)r(r-1)/2+(r-1)(d-1)}}{r \cdot \prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g-2}} \cdot \frac{(-1)^m}{m+1} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g-2}} \cdot \frac{(-1)^m}{m+1} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g-2}} \cdot \frac{(-1)^m}{m+1} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g-2}} \cdot \frac{(-1)^m}{m+1} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g-2}} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g}} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g}} \cdot \frac{1}{\prod_{0 \le i < j \le r-1} (z_i - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot \frac{1}{\prod_{j \le i < j \le r-1} (z_j - z_j)^{2g}} \cdot
$$

Examples.

• If we compute the volume vol $(\mathcal{M}_{(2,1)}^{\mathrm{ss,fd}})$, when $g=1$, we get

$$
0 + 0 + 0 + 0 + \cdots = 1.
$$

When $q = 2$, we get

$$
1 + 3 + 5 + 7 + \dots = \frac{1}{12}.
$$

• When $q = 1$, the fixed determinant moduli stack has virtual dimension 0, and

$$
[\mathcal{M}_{(r,d)}^{\mathrm{ss,fd}}]_{\mathrm{inv}}=(-1)^{(r-1)(d-1)}.
$$

Contents

- [Overview](#page-1-0)
- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)

The proof is by induction on rank.

Ingredient 1.

Wall-crossing between two stability conditions for pairs gives

$$
[\tilde{\mathcal{M}}^{\mathrm{ss}}_{(r,d),1}]_{\mathrm{virt}}=\sum_{\substack{(r,d)=(r_0,d_0)+\cdots+(r_m,d_m),\\m\,\geq\,1,\;r_i>0\;\mathrm{for\;all\;}i,\mathrm{such\;that\;} d_0/r_0
$$

This is a finite sum. The r.h.s. only involves invariants of rank $\lt r$.

Ingredient 1 (continued)**.**

Assume that the main theorem is true for rank $\lt r$. Plugging in the regularized sum expression, we obtain

$$
[\hat{\mathcal{M}}_{(r,d),1}^{ss}]_{\text{virt}} = \sum_{(d_1,...,d_r) \in \Lambda} (\text{coeff.})
$$

$$
\left[\left[... \left[[\hat{\mathcal{M}}_{(1,d_1),1}^{ss}]_{\text{virt}}, [\hat{\mathcal{M}}_{(1,d_2)}^{ss}]_{\text{fund}} \right], ... \right], [\hat{\mathcal{M}}_{(1,d_r)}^{ss}]_{\text{fund}} \right].
$$

This effectively computes all the pair invariants, as the rank 1 invariants are simple.

Ingredient 2.

The analogue of DT–PT wall‐crossing gives

$$
[\hat{\mathcal{M}}_{(r,d),1}^{ss}]_{\text{virt}} = \sum_{\substack{(r,d)=(r_1,d_1)+\cdots+(r_m,d_m),\\m\geq 1, r_i>0, d_i/r_i=d/r \text{ for all } i}} (\text{coeff.}) \cdot \prod_{m\geq 1, r_i>0, d_i/r_i=d/r \text{ for all } i} [\cdots \left[\left[e^{((0,0),1)}, [\mathcal{M}_{(r_1,d_1)}^{ss}]_{\text{inv}} \right], [\mathcal{M}_{(r_2,d_2)}^{ss}]_{\text{inv}} \right], \cdots \right], [\mathcal{M}_{(r_m,d_m)}^{ss}]_{\text{inv}}].
$$

where the sum is a finite sum.

The l.h.s. is known. The only unknown on the r.h.s. is $[\mathfrak{M}^{\mathrm{ss}}_{(r,d)}]_{\text{inv}}$. It remains to check that the expression for $[\mathfrak{M}^{\mathrm{ss}}_{(r,d)}]_{\textsf{inv}}$ is consistent with this wall‐crossing.

Ingredient 3.

What we are left to do is pure combinatorics. In rank 3, this is illustrated below.

Contents

- [Overview](#page-1-0)
- [Moduli of sheaves](#page-10-0)
- [Homological invariants](#page-18-0)
- [The regularized sum](#page-23-0)
- [Main result](#page-29-0)
- [A taste of the proof](#page-35-0)
- [Future directions](#page-40-0)
- Find a geometric or physical interpretation of the regularized sum formula.
- Generalization to principal bundles.
- Generalization to higher dimensional varieties (Related: Joyce's ongoing project on surfaces).
- Categorification of the regularized sum.

Thank you!